Machine Learning & Computer Vision
Publications, preprints & participation to conferences
- Spatial Consistency Loss for Training Multi-Label Classifiers from Single-Label Annotations, Thomas Verelst, Paul K. Rubenstein, Marcin Eichner, Tinne Tuytelaars, Maxim Berman. arXiv preprint, March 2022.
- PhD Thesis: Tractable Approximations for Achieving Higher Model Efficiency in Computer Vision Defended in September 2020
- AOWS: Adaptive and optimal network width search with latency constraints, Maxim Berman, Leonid Pishchulin, Ning Xu, Matthew B. Blaschko, Gérard Medioni, CVPR 2020 (oral)
- Discriminative training of conditional random fields with probably submodular constraints, Maxim Berman, Matthew B. Blaschko. IJCV, January 2020. [preprint]
- Function Norms for Neural Networks, Amal Rannen Triki, Maxim Berman, Vladimir Kolmogorov, Matthew B. Blaschko. ICCV 2019 workshop on Statistical Deep Learning for Computer Vision
- A Bayesian Optimization Framework for Neural Network Compression, Xingchen Ma, Amal Rannen Triki, Maxim Berman, Christos Sagonas, Jacques Cali, Matthew B. Blaschko. ICCV 2019
- Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice, Jeroen Bertels, Tom Elbode, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops, Matthew B. Blaschko. MICCAI 2019
- Adaptive Compression-based Lifelong Learning, Shivangi Srivastava, Maxim Berman, Matthew B. Blaschko, Devis Tuia, BMVC 2019 spotlight
- MultiGrain: a unified image embedding for classes and instances, [code], Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas Kokkinos, Matthijs Douze. arXiv preprint. Work done during an internship at Facebook AI Research in Paris.
- The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks, Maxim Berman, Amal Rannen Triki, Matthew B. Blaschko. Published in CVPR 2018.
- Masters thesis I supervised at KU Leuven (2018)
- Generating superpixels with deep representations (extended abstract), Thomas Verelst, Maxim Berman, Matthew B. Blaschko, poster at "Deep Vision" workshop at CVPR 2018.
- Efficient semantic image segmentation with superpixel pooling, Mathijs Schuurmans, Maxim Berman, Matthew B. Blaschko, arxiv preprint. [Code]
- Stochastic Weighted Function Norm Regularization, Amal Rannen Triki, Maxim Berman, Matthew B. Blaschko, arxiv preprint, Oct. 2017
- Efficient optimization for probably submodular constraints in CRFs, Maxim Berman, Matthew B. Blaschko. Presented at the NIPS workshop on Constructive Machine Learning 2016.
- Monocular Surface Reconstruction using 3D Deformable Part Models, Stefan Kinauer, Maxim Berman, Iasonas Kokkinos, presented at "Geometry Meets Deep Learning" in ECCV 2016.
My Master works
- Master Internship report: higher-order grammars in Computer Vision
- Paper study on Local Coordinate Coding
Physics
Master works
Bachelor works
On GitHub
- Pytorch-DAG simple DAG module in Pytorch
- Enet-PyTorch Convert a lua model into PyTorch, compatible with ENet
- SSVMjulia.jl -- Implementation of Structured SVMs in Julia
- Daisy.jl -- C wrapper around C++ Daisy Library, and Julia integration
Misc
I based the Pelican theme for this website on pelican-bootstrap3; modifications can be made available.