
MVA MSc – Internship report
Higher-order Grammars in Computer Vision

Maxim Berman
Supervisor: Nikos Paragios

Center for Visual Computing @ École Centrale

April – August 2014

Abstract

This work introduces the use of Graph Grammars into Computer Vi-
sion. After a review of existing grammatical descriptions of images, an
introduction to the different formalisms of Graph Grammars is given. A
new graph grammar learning method, based on a substructure search algo-
rithm suited for Computer Vision, is presented. The substructure search
algorithm and grammar learning method performance are tested on images
of building facades in the ECP facades databases.

Acknowledgements
I heartily thank Professor Nikos Paragios for his support and supervision during
this research internship, for the trust I was given during this work and for the
great resources put at my disposal at the CVC laboratory at École Centrale
Paris. I also wish to thank the people in charge of the MVA Masters at ENS
Cachan for the organization of the internships, both on the pedagogic and on
the administrative side, and Natalia Leclercq, the very efficient and supportive
secretary of the CVC lab.

2

Contents
Introduction 4

1 Grammars: formalism and uses in Computer Vision 5
1.1 Formal Grammars . 5
1.2 Use of grammars in Computer Vision 6

1.2.1 Object detection grammars 6
1.2.2 Split grammars . 10

2 Graph grammars 12
2.1 Definition . 12
2.2 Node Replacement Grammars . 12
2.3 Hyperedge Replacement Grammars 13

3 Methods and results 15
3.1 Research direction . 15
3.2 Working graphs . 16
3.3 References on graph grammar learning 17
3.4 Substructure search . 18

3.4.1 Algorithm . 18
3.4.2 Results of substructure discovery 21

3.5 Graph grammar learning . 27
3.5.1 Results . 30

Conclusions and Perspectives 34

3

Introduction
Essential to intelligent technologies omnipresent in our daily lives, from per-
sonal digital assistants and monitoring systems to life-saving biomedical devices,
Computer Vision has become a key challenge of the 21th century. Thanks to
the massive research effort in the field and the exponential increase in available
processing power, the analysis of images and videos has seen great progress in
last decades, and state-of-the-art object detection approaches human capacity.

However, competitive detection systems often rely only on low-level image
representations. Developing an efficient use and learning of high-level image
semantics in order to assist the Computer Vision task, towards whole-scene un-
derstanding, remains a subject of active research.

This search for a concise representation of the composition of images explains
the recent emergence of Grammars in the field. Introduced in the 50s by the
linguist Noam Chomsky as a model of human languages [1], formal grammars,
that describe languages by a finite set of operations on symbols, have quickly been
adopted by computer scientists to formalize computer languages, and have found
applications in many other fields: biology [11], botany [12], architecture [19],
computer graphics…

Some categories of images can be naturally associated to a description in
terms of a grammar. Each particular instance of an object contained in the
category can be associated to a derivation tree of the grammar; therefore, the
grammar serves both as a constraint and an aid to the computer vision task,
such as the recognition of the objects contained in the picture.

The different approaches of introducing formal grammar models into Com-
puter Vision lead to simple and often incomplete models of image semantics:
while suited to model objects, grammars fail at describing whole scenes. This can
be thought of as a limitation of grammars themselves, because grammar deriva-
tions generate derivation trees and can therefore only lead to tree-like constraints
in an image, while some other Computer Vision models, such as Deformable Part
Models, introduce graph-like, cyclic constraints in images.

This observation calls for the search of an extension of grammar models suited
for describing not only tree constraints, but entire graphs. Graph Grammars,
introduced in the late 60s, are natural candidates. These grammars can be seen
as an extension of formal grammars, and describe families of graphs using a
finite set of graph transformation rules. The symbols manipulated by Graph
Grammars are graphs themselves. This leads to a great expressive power of
graph grammars.

This work reviews the main uses of grammars in Computer Vision and in-
troduces Graph Grammars as a new language of model description. First, in
Section 1, the formalism of formal grammars is presented, along with former
uses of grammars and grammar learning methods in the field. In Section 2, the
formalism of Graph Grammars is presented. Finally, Section 3 presents the new
methods and results obtained during this internship.

4

1 Grammars: formalism and uses in Computer
Vision

1.1 Formal Grammars
A formal grammar describes transformations of a family of symbols according to
a fixed set of rules. It is composed of a set of symbols A, a set of nonterminal
symbols N ⊂ A, a starting symbol S ∈ N , and a set of productions P of the
form

X =⇒ Y1Y2 . . .Yn (1)
describing a substitution of a nonterminal symbol X ∈ N into a succession of
symbols Y1, . . . ,Yn ∈ A. A grammar derivation starts with the starting symbol
S and applies the substitutions described by the grammar productions iteratively
until the obtained word contains only terminal symbols.

This is best understood through simple examples. Consider a grammar G1,
operating on the alphabet {a, b,S}, its starting symbol S being its only nonter-
minal, comprising two productions

S→ aSb (p1)
S→ ab. (p2)

One derivation of grammar G1 is

S (p1)=⇒ aSb (p1)=⇒ aaSbb (p2)=⇒ aaabbb. (2)

The language generated by grammar L(G) is the set of words obtained from
every possible derivation of the grammar starting with starting symbol S. In our
example, the language generated by G1 can easily be inferred to be the set of
words starting with a symbols followed by b symbols repeated in equal number,
that is

L(G1) = {anbn | n ≥ 1}. (3)
Let us consider a second example: G2 operates on the alphabet {a, b, c,S,B}

and has four productions

S→ aBSc (p1)
S→ ab. (p2)

Ba→ aB. (p3)
Bb→ bb. (p4)

This time the grammar has 3 terminal symbols a, b, c and 2 nonterminal
symbols—in upper case by convention: the starting symbol S and symbol B.
One derivation of this grammar is

S (p1)=⇒ aBSc (p1)=⇒ aBaBScc (p2)=⇒ aBaBabccc
(p3)=⇒ aBaaBbccc

(p3)=⇒ aaBaBbccc
(p3)=⇒ aaaBBbccc

(p4)=⇒ aaaBbbccc
(p4)=⇒ aaabbbccc. (4)

5

It is straightforward to infer that the language generated by this second gram-
mar is

L(G2) = {anbncn | n ≥ 1}. (5)

The examples of grammars G1 and G2 provide some fruitful insight on the
computational properties of grammars. The languages generated by the two
grammars look quite similar. However, the presence of more than one symbol at
the left side of productions (p3) and (p4) fundamentally differentiates the two
grammars: G2 uses the context of symbols in the production rules (the symbols
that are near the nonterminal symbols), as opposed to G1—which is therefore
called context-free.

This difference has crucial implications. Consider the

Parsing Problem. Given a word w and a grammar G, is w ∈ L(G)?

While any context-free grammar can be parsed in cubic time using a generic
algorithm [17], no general parsing algorithm exists for unrestricted grammars.

Another common problem of formal grammars, central to this work, is the

Inference Problem. Given a set of words w1, w2 . . . , wn, find a grammar G
such that w1, . . . , wn ∈ L(G)—under certain simplicity assumptions on G.

While inference is rather a class of problems and can be formalized in different
ways, it is clear that inferring an unrestricted grammar from a set of examples is
close to impossible: in fact, example G2 shows that the convoluted productions
that have to be used in order to infer the apparently simple language {anbncn}
are difficult to guess even for humans. Therefore, grammar inference methods
are limited within restricted classes of grammars.

1.2 Use of grammars in Computer Vision
1.2.1 Object detection grammars

Object detection grammars were introduced by Felzenswalb and McAllester [7]
in order to give a grammar formalism of compositional models in Computer
Vision. It was proposed as an evolution to Deformable Part Models, suited for
the recognition of objects with high compositional variability. The aim of object
detection grammars is category-level object detection. Objects of interest in
input images have to be detected, given a bounding box, and assigned to one of
few object categories. Object detection is one of the core problems of Computer
Vision today, and is still far from solved.

One of the main challenges of object detection is the great variation in ap-
pearance of objects within object classes. An object can endure a deformation
by having the relative position or orientations of its parts changes, leading to a
smooth change in appearance, or even to a non-smooth change if self-occlusions
come into play. Other “soft body” objects, such as cats, may be subject to non-
rigid deformations. Viewpoint variations also change the appearance of objects:

6

when these variations are large, they can change the shape of objects completely,
making it impossible to model the variation as a smooth deformation.

Deformable Part Models [5] (DPMs) addresses some of this appearance vari-
ability by representing objects as a deformable arrangement of their parts. For
instance, a bike can be thought as a deformable arrangement of its wheels, saddle
and handlebar, and a person can be similarly decomposed into its body parts.
Hence, by learning the appearance of each subparts—this appearance being for
instance captured as a Histogram-Of-Gradient filter—and the relative positions
of these subparts, one obtains an object model robust to deformations [6]. The
use of star-shaped DPMs (each object being positioned relative to one central ob-
ject) or tree-linked DPMs leads to efficient learning of such models using dynamic
programming.

When more dramatic viewport changes come into play, a single deformable
model struggles with fitting all the views of an object. For instance, bikes have
very different shapes when seen from the front and seen from the side. One
solution is to use a mixture of deformable models [6], as shown on Figure 1.
Each component of the mixture corresponds to a different view of the object.
The learning uses a latent SVM approach in order to select the appropriate
component as a latent variable.

Figure 1: Detection of bicycles using a 2-component mixture of deformation
models. The first component captures sideways views and the second front views
of bicycles. Illustration taken from Felzenszwalb et al. [6]

Mixture deformation models performs at state of the art level on various
object detection challenges; however, it falls short of addressing all sources of
appearance variability. Indeed, mixture DPMs cannot address the compositional
nature of many rich object classes. A person, for instance, can present infinite
variations in the appearance of its parts, simply by wearing a hat, glasses or shoes,
or playing an instrument. Two instances of the same object could moreover have
a different number of subparts, as is the case for buildings with different numbers

7

of windows, or trains with different numbers of carriages. The change of subparts
does not constitute a smooth deformation: it can therefore not be addressed in a
single-component DPM. Given the exponential number of combinations that may
be formed by choosing the subparts, it is not possible to devote one component
of a mixture DPM to each possible combination of parts either.

Grammar models are an elegant way of addressing the compositional com-
plexity of objects. A grammar model describes an object as a composition of
its parts: the placement of a part, like a face, may optionally give rise to the
placement of a subpart, like a hat or a tuba mask; the rules describing the pos-
sible combinations are contained in the grammar productions. Figure 2 gives an
informal illustration of the use of a grammar to describe a person.

person → face, trunk, arms, lower-body
face → eyes, nose, mouth
face → hat, eyes, nose, mouth
hat → cap
hat → sombrero
lower-body → shoe, shoe, legs
lower-body → bare-foot, bare-foot, legs
legs → pants

person

face

eyes nose mouth

trunk arms lower-body

shoe shoe legs

pants

Figure 2: Illustration of a grammar describing a person. Left: informal for-
mulation of productions in a person grammar. Right: a derivation tree of this
grammar, corresponding to the particular instance of a person.

The formalization of this idea leads to object detection grammars [7], which
are very similar in nature to the grammar formalism described in Section 1.1.
The grammar operates on symbols according to its production rules, and has
a set of nonterminal symbols N and a set of terminal symbols T . A grammar
derivation expands nonterminals into terminal symbols. Terminal symbols are
the elementary parts that are not decomposed into new subparts, such as an eye
in a face or a wheel on a bike. They are associated with a learned appearance,
represented e.g. by a HOG filter. Nonterminals can be decomposed into different
subparts—e.g. a face could be decomposed into eyes, a mouth and a nose, or
expanded into different possible appearances—e.g. a mouth nonterminal could
be replaced by a smiling mouth or a frowning mouth.

In order to introduce geometry in the models, the notion of placed symbol
is introduced. A symbol Y ∈ N ∪ T may be placed in an image at a location
ω ∈ Ω, where Ω is a set of possible locations. The productions of the grammar
are take the form

X(ω0)
s−→ {Y1(ω1), . . . , Yn(ωn)}, (6)

replacing a placed nonterminal X by a set of placed symbols Y1, . . . , Yn. The
right-side of the productions is not ordered, on the opposite of the formal gram-
mar formalism. Moreover, each production is weighted by a score s. The number
of possible positions ω ∈ Ω being large, the number of productions is very large

8

or infinite. However we can group parametrize families of productions together,
therefore speaking of a production schema of the form

X(ω0)
s(ω0,ω1,...,ωn)−−−−−−−−→ {Y1(ω1), . . . , Yn(ωn)}, (7)

where the score of a production depends on the position of the symbol being
replaced and the new placed symbols.

The detection of an object using a detection grammar is done by maximizing a
score, as in a DPM; however, the optimization also spans all possible derivations
of a grammar. Each non-terminal expansion is given the score associated to
its production, as seen above; each placement of a terminal is given a score
corresponding to the affinity of its appearance filter to its position in the image,
as depicted on Figure 3; the score of a derivation is simply the sum of the scores
of its expansions and of the placement of its terminals.

feature space

head filter

input image

Figure 3: Affinity of a head filter on an image. Bright regions in the affinity map
(on the right) correspond to likely heads candidates. Illustration taken from [6]

Isolated deformation grammars Isolated deformation grammars are a spe-
cial class of object detection grammars that allow for efficient learning. In these
grammars, subpart placement production schemas

X(ω)
β−→ {Y1(ω + δ1), . . . , Yn(ω + δn)} (8)

are isolated from deformation production schemas

X(ω)
β(δ)−−→ {Y (ω + δ)} (9)

allowing for the use of dynamic programming techniques and, if the deformation
cost β(δ) is quadratic in β(δ), distance transforms, for efficient object detection—
refer to [6] for details.

The appearance filter of each subpart is learned independently from the
derivation of particular instances. This is a huge improvement over a mixture
DPM where each component of the mixture has to be learned independently,

9

and there is no shared knowledge between subparts in different components, for
instance the appearance of a face in different components of a mixture DPM
person model.

The grammar model for person detection presented in article [7] shows high
performance on the PASCAL benchmark [4]. The grammar parameters, appear-
ance filters and production scores, are learned from examples. However, the
grammar is defined by hand: the working system defines a person as having 6
main parts and a possible occluder part, as seen on Figure 4 (these parts have
subparts themselves). The derivations are made from the head to the bottom:
is the lower-body of a person is occluded, then the occluder part is added and
terminates the derivation.

Parts 1-6 (no occlusion) Parts 1-4 & occluder Parts 1-2 & occluder

Example detections and derived filters

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Occluder

Figure 4: Overview of the first layer of the grammar model defined in [7] (image
taken from the article). The occluder part is derived when the lower-part of a
person is occluded.

1.2.2 Split grammars

Split grammars have been introduced as a procedural description tool in architec-
ture by Peter Wonka [19], building upon Stiny’s early work on Shape grammars
[14]. Split grammars have been successfully used in Computer Vision, in the
field of architectural buildings parsing. On the opposite of the object detection
grammars discussed previously, split grammars do not consider relations between
high-level objects such as wheels in a bike or windows on a building. Instead,
they start from a low-level shape, such as a 2D rectangle, and describe the suc-
cessive splits that must be applied to this shape in order to obtain the shape of
a particular object.

Work on inference The first works on the use of binary split grammars in
facade parsing involved manually defined grammars in the recognition process.
A grammar description being restricted to a particular architecture, such as
haussmannian facades, this approach is tedious when it comes to accommodating
a new architectural style. This motivates the work in automatic inference of split

10

wall(1)

wall(1)

wall(1)

floor*(2) window(0)

floorWin(5)

floor*(2) window(0)

floorWin(5)

floor*(2)

wall(1)

wall(1)

wall(1)

wall(1)

floor*(2) window(0)

floorWin(5)

floor*(2) window(0)

floorWin(5)

floor*(2)

wall(1)

facadeWa(4)

facade(3)

facadeWa(4)

facade(3)

image(-1)

Parent Children Split
Axiom(W,H) Facade(0,0,W,H) None
Facade(0,Y,W,H) Floor(0,Y,W,h) Fa-Wall(0,Y+h,W,H-h) Y:h
Fa-Wall(0,Y,W,H) Wall(0,Y,W,h) Facade(0,Y+h,W,H-h) Y:h
Floor(X,Y,W,H) Wall(X,Y,w,H) Fl-Win(X+w,Y,W-w,H) X:w
Fl-Win(X,Y,W,H) Window(X,Y,w,H) Floor(X,Y,W-w,H) X:w

Figure 5: Example of a building facade (left), corresponding derivation tree
(right) using a simple Binary Split Grammar whose productions are listed (bot-
tom table). Each production splits a rectangle node in a horizontal or vertical
way and defines new subrectangle regions on each side of the split. Illustration
taken from Teboul et al. [16].

grammars from a set of example buildings sharing the same architecture. Two
main approaches have considered in the field of binary split grammars learning.

• Weissenberg et al. [18] developed tools to generate procedural grammars
directly from image of buildings, by detecting changes of regions in the
images and inferring a split grammar from this low-level knowledge. The
generated grammar has low compression rate (high redundancy of inferred
production rules) but the method is fully automatic with no prior assump-
tion on the structure of buildings

• R. Gadde (CVC, École Centrale) is developing a split grammar inference
method which starts with a basic generic split grammars describing build-
ings, and particularizes this grammar for a given architecture by find-
ing redundant subtrees in building derivations and replacing them with
new grammar rules. This produces a cleaner grammar than the previous
method, but does use prior knowledge on the structure of buildings.

11

2 Graph grammars
In the previous section, we have seen that grammars have been used as an image
specification tool in different areas of Computer Vision. Both in object detec-
tion grammars and in binary split grammars, grammar productions engender a
derivation tree suited to a particular instance of an object. This derivation tree
is used as a guide and a constraint to the recognition task. One shortcoming of
this approach is that a derivation will necessarily engender a tree; while this rep-
resentation seems very suited to some classes of compositional objects, it seems
impossible to create a tree-representation of an entire natural scene. Moreover,
the models described before present no structural innovation. A repetition of
carriages on a train will not be detected as such in order to infer some general
rule that a train is composed of an undetermined number of repeated carriages.

Graph grammars are more sophisticated than formal grammars. Instead
of producing a derivation tree from symbol transformations, graph grammars
describe transformations that affect a graph: graph grammars are graph rewriting
systems. Generally speaking, graph grammars search for all occurrences of a
subgraph H in a graph G and replace them by a new subgraph H, according
to one of the grammar productions. The productions do not simply describe
the replacement of subgraphs by new subgraphs: they also include connection
instructions that describe how the new subgraph H′ should be connected to the
neighbours of the old subgraph H.

There are two complementary approaches to graph grammars: node rewrit-
ing systems, in which a node in a graph is replaced by a new subgraph; and
(hyper)edge rewriting systems, which replaces edges in a graph (or hyperedges
in a hypergraph) by a new subgraph. Either systems are described in the two
following subsections.

2.1 Definition

2.2 Node Replacement Grammars
Node Replacement (NR) grammars are a class of graph grammars that act by
replacing a node n in a graph G by a new subgraph H. There are different
classes of node replacement grammars, having different language expressiveness:
these classes differ by their connection instructions, which specifies how the new
subgraph H should be connected to the former neighbours of n in G.

Node-label Controlled (NLC) replacement grammars are a simple class of NR
grammars. The connections instructions take the form (X,Y), where X is a label
of a node in G, and Y is a label of a node in the new subgraph H. If the node
n in G is being replaced by H, then the former neighbours of n having label X
should be linked to the nodes of H having label Y .

The example of Figure 6 illustrates the behavior of NLC grammars. One
starts with the start symbol X. Applying production 2 stops the derivation
(there are no nonterminals left). Applying production 1 and then 2 , one the
top graph of Figure 7. Applying 1 two times and then 1 , one obtains the

12

bottom graph of Figure 7. More generally, one can infer that this grammar
generates all chains (abc)n for n ≥ 1 with extra edges between all b-labelled
nodes.

a b c
XX =⇒

Connection instructions: (c− a); (b− b); (b−X)

1 2

a b c

Figure 6: A node-label controlled graph grammar. The vertical bar is a shorthand
or notation: the nonterminal X can be replaced either by the subgraph on the
left or by the subgraph on the right; hence the grammar has two production
rules.

a b c a b c

a b c a b c a b c

Figure 7: Two graphs generated by the NLC grammar described in Figure 6.

NLC grammars operate on undirected, node-labelled graphs. More general
classes of NR grammars operate on graph with directed and labelled edges. More-
over, when replacing node n in G by subgraph H, the connection instructions
become more powerful if they can refer to specific nodes in H instead of only
refering to the labels of the nodes in H: this way, it becomes possible to distin-
guish between two nodes in H sharing the same label. The most general class of
NR grammars that incorporate all these extensions is the class of edNCE gram-
mars, standing for edge-labelled directed Neighborhood Controlled Embedding.
Without going into further details, Figure 8 illustrates in a graphic notation the
production of such a grammar.

2.3 Hyperedge Replacement Grammars
A complementary approach to node replacement grammars are hyperedge re-
placement grammars. Generally, they operate on hypergraphs, a generalization
of graphs where edges are no longer binary relations between two nodes, but
k-ary relations between k nodes. An edge consists of an ordered list of nodes
(n1, n2, . . . , nk) and a label A. If a k-ary edge (n1, n2, . . . , nk) is at the left side of
a production, the graph on the right side of the production will comprise handles
1, . . . , k indicating the connections to nodes (n1, n2, . . . , nk).

Figure 9(a) shows an example of a hyperedge replacement grammar. The
edges are represented by squares, and the connection of hyperedges to their nodes

13

(a) (b) (c)

Figure 8: An example of a production of an edNCE grammar: the graphs (inside
rectangular boxes) are augmented with their connection instructions (outside
rectangular boxes). X is a nonterminal node. In the replacement of node X
in graph (a) by subgraph (b), the whole box around graph (b) replaces the
node X produces graph (c). The connections to the box are replaced by their
continuation inside the box. One obtains graph (c) after this production. Refer
to [13] for further details.

is numbered. Figure 9(b) shows a derivation of the grammar. The generated
graph languages consists of chains anbncn, n ≥ 1.

(a) The grammar’s 4 produc-
tions.

(b) A derivation in the grammar.

Figure 9: A hyperedge replacement grammar generating chains anbncn, n ≥ 1; S
and A are nonterminals, S is the start symbol (extracted from [13]).

14

3 Methods and results

3.1 Research direction
Object detection grammars, introduced by Felzenszwalb et al. and described in
Section 1.2.1, constitute an major step toward semantic-assisted object detection.
A model of the semantic structure of a class of images, described with a few
grammar rules, is able to support a Computer Vision task. The approach does
however have its limits:

1. It requires a manually-defined grammar;

2. The grammar generates derivation trees that describe the constraints be-
tween the subparts of the object. It seems unlikely that these tree-constrains
can be appropriate to describe whole scenes; the method is suited for some
classes of objects but not for whole-scene understanding, since the con-
straints can only follow a tree;

3. The grammar uses no recursive rules: for instance, there can be no rule
describing a building as a succession of n windows, for an undetermined n.

The presence of an occluder element in the person detection grammar, as
seen in Figure 4, is a good illustration of point 2. The occluder is necessary to
handle occlusions of the bottom part of a person behind an object; yet it has no
semantic meaning and is not part of a person; it is introduced artificially for a
better efficiency of the grammar model.

Split grammars, as presented in Section 1.2.2, use grammars in a different
way, as a shape description language. While they turn out to be appropriate
for some object classes, such as building facades, they are based on splitting of
rectangular shapes and seem therefore difficult to adapt in the case of arbitrary-
shaped natural objects. Moreover, as they generate tree-structured graphs, they
present the same shortcomings as object detection grammars, and the constraints
of the models follow the structure of the tree. For instance, in the case of a build-
ing facade, the vertical alignment of windows has to be introduced as a manual
requirement in the model and can not be enforced by the grammar only.

We have seen how graph grammars are more powerful than formal grammars
as a graph rewriting systems. While formal grammars can describe trees through
their parse tree, graph grammars operate directly on graphs. Graph grammars
are therefore natural candidates for describing graphs appearing in Computer
Vision, such as Deformable Part Models.

We have seen how grammar inference is crucial in automatizing the use of
grammars in Computer Vision: it is not possible to rely on manually-defined
grammars on new problems. This is even more true in the case of graph grammars
where it is difficult for a human to design a graph grammar suited for a particular
problem. While graph grammars have been quite extensively studied from the
point of view of their expressiveness as a language, the automatic learning of
graph grammars that would suit a particular family of graphs is to a large extent

15

an open problem. For this reason, the internship has been focused on designing
a method of automatic generation of a graph grammar from a family of graphs.

3.2 Working graphs
This work on graph grammars have been done using images of building facades.
Indeed, facade buildings are relatively simple objects with repeating aligned
structures and appear as a good starting point for the introducing graph gram-
mars in Computer Vision. Moreover, the labelling of many facades is already
available through the ECP Facades Database [15].

(a) image

Window
Wall
Balcony
Door
Roof
Chimney
Sky
Shop

(b) labelling (c) conn. components (d) graph

Figure 10: From a facade image to a graph.

Graphs are built directly from the labelled images: by means of a connected
components analysis, the rectangular objects are localized in the pictures. Each
window, balcony and door object is then associated with a node in the graph. The
node is labelled with the nature of the object it represents. Then edges between
close objects are added to the graph. Different methods were considered:

1. Connecting all objects which centers are closer than a threshold,

2. Connecting an object to its k nearest-neighbours,

• using its distance to closest centers
• using the distance between its shape rectangle and the shape rectangle

of other objects.

Method 1 produces densely connected subgraphs and high degree nodes in
regions where there are more objects. Since the running time of the algorithms
developed in this work degrades poorly with the graphs degrees, a nearest-
neighbour method, which allows to control the maximum degrees of the nodes,

16

was adopted instead. The use of the rectangle-distance, that measures the closest
distance between the two shape rectangles, instead of the distance between cen-
ters, allow us to capture more information on the adjacencies between elements:
see for example how the running balconies connect to all windows on the floor
in the graph of Figure 10. The nodes are colored according to their nature, and
the same colour scheme will be used in the rest of this document.

3.3 References on graph grammar learning
There is little literature on the subject of graph grammar learning;

• Fürst et al. [8] use a parser-controlled process to infer a grammar from
a set of positive and negative example graphs. The algorithm starts with
an elementary grammar generating all positive graphs, and generalizes its
productions of this grammar as long as none of the negative examples can
be generated by the learned grammar,

• Kukluk et al. [9, 10] detect repeating substructures in one example graph,
and infer a production from these repeating substructures. The process is
iterated until the productions no longer compress the information of the
graph.

The second approach is simpler: it uses no graph grammar parser, and there is
no need to define any generalization operation on graph grammar productions, as
in the first approach. For these reasons, it was the starting point of this research.

The aim of this graph grammar learning method introduced by Kukluk et al.
[10] is to infer an edge replacement grammar from an example graph. One ex-
ample of an edge replacement grammar possibly inferred by the method consists
of the productions

S =⇒

e

S

f

d
v1

v2

∣∣∣∣∣∣∣∣∣ d
v1

v2
(10)

where v1 and v2 mark the two handles of the replacement symbols. This grammar
leads to the graph language containing the single d-labelled edge and the chains

e

d

f

d

e

d

f

d

e

d

f

. (11)

The algorithm proceeds in three steps:

1. Identification of repeating substructures:
Using a substructure discovery algorithm based on the work of Cook and
Holder [2], a repeating subgraph S is identified in the example graph G.

17

On our previous edge grammar example, this repeating subgraph could be

1 2e

4

d

3 f

d . (12)

Two instances of this substructure in the graph should have no more than
two vertices in common.

2. Inference of a new grammar rule:
The edges where the different instances of the substructure connect are
identified. On our previous example, instances of (12) are connected by
their (2, 4) edges to the (1, 3) edge of other instances. This identified con-
nection is inferred as a new grammar rule.

3. Compression of the graph:
Every instances of the best substructure found are replaced by single ver-
tices: this operation can be reversed using the new grammar rule. The
obtained graph is the graph G compressed by the substructure S, noted
G|S.

Steps 1–3 are repeated and new grammar rules are found at each iteration;
the algorithm continues until there is no more information contained in graph G
than in graph G|S, according to some information measure taking the description
of the grammar rules into account.

3.4 Substructure search
3.4.1 Algorithm

A key of the graph grammar learning procedure described earlier is the search
of repeating patterns in the graph. This has been one main concern of this
work. The approach developed here draws inspiration from the work of Cook
and Holder [2].

A repeating substructure S is a connected graph isomorphic to multiple sub-
graphs S1, . . . ,Sn of a host graph G. S1, . . . ,Sn are the instances of S in G.

The smallest substructures of a graph are single nodes. There are as many
1-node substructures as the number of different labels in the graph. These are
the initial parent substructures of the algorithm.

Bigger substructures are found by growing parent substructures, one supple-
mentary vertex at a time. The subgraphs obtained by extending each instance
of the parent substructures along an outgoing edge in the graph G are grouped
into new isomorphic substructures with one supplementary vertex. The score of
these bigger substructures is computed according to some measure. Only the
top-scoring substructures are kept for the following iteration of the algorithm
(beam search). Algorithm 1 summarizes this procedure.

18

Algorithm 1 Substructure Discovery
1: procedure findSubstructures(Graph G, int maxDepth, int beamWidth,

int maxSharedVtx)
2: . Initialize substructures to single nodes
3: L ←new substructure list
4: for all distinct vertex label l in G :
5: I ←single vertices labeled l
6: insert substructure l with instances I into L
7: bestSub ←first substructure in L . best substructure initialization
8: . Grow substructures
9: for depth ≤ maxDepth :

10: L_new ←new substructure list
11: for all S in L :
12: I ←instances of S
13: I_new←All subgraphs obtained by extending instances in I along

neighbouring edges in S
14: for all inst in I_new :
15: if inst is isomorphic to a substructure S in L_new :
16: if no instance of S share more than maxSharedVtx with

inst :
17: insert inst into the instances of S
18: else
19: insert new substructure isomorphic to inst into L_new
20: insert inst into the new substructure’s instances
21: scores← evaluateSubstructures(g, L_new)
22: . Pruning
23: prune substructures with only 1 instance in L_new
24: order L_new by scores
25: keep only beamWidth first substructures in L_new
26: replace bestSub if a higher-scoring substructure has been found
27: L ←L_new

return bestSub

Subgraph signatures When considering a new instance, one must check
whether it is isomorphic to any substructure previously inserted into the new
substructure list, to know if the instance should be added to an existing sub-
structure or a new one. Checking for graph isomorphism is a costly, NP-hard
operation, even with the optimized VF2 algorithm introduced by Cordella et
al. [3] which was used in this work—as part of the Python package graph-tool.
This isomorphism check is nevertheless necessary in order to correctly associate
a subgraph to each of its instances in the graph.

In order to minimize the calls to the subgraph matching algorithm, apart
from the use of a beam search, a method was designed to assign signatures to
the subgraphs of G, uniquely identifying the explored subgraphs. Each signature

19

indicates the order in which the vertices of a substructure have been discovered.
It has a left side, describing a discovery path, and a right side, describing sup-
plementary edges. Consider the following chain of instances, corresponding to
the growth of an instance during subsequent iterations of the algorithm:

W =⇒ W W =⇒

W W

B

=⇒

W W

BB

=⇒

W W

BB

. (13)

Throughout these expansion steps, the associated subgraph signature grows
as

W, () =⇒ (W, (0, W)), () =⇒ (W, (0, W), (0, B)), ()
=⇒ (W, (0, W), (0, B), (2, B)), () =⇒ (W, (0, W), (0, B), (2, B)), (1, 2) (14)

which is to say that at each expansion step

• If a new node w is added through an edge outgoing from a node v, it is
added to the discovery path as a couple (n, L) with n the index of node v
in the discovery path, and L the label of the new node w.

• If a new edge is added, the index of its source and target in the discovery
path is added to the right side of the signature.

The use of this graph signature limits the need for isomorphism testing in
the following way. At iteration n + 1 of the algorithm, all the substructures
remaining from iteration n are extended along one edge in the graph. The
subsequent discovery paths only differ on the last vertex in the discovery path,
or edge in the supplementary edge list.

Because of the pruning, isomorphic substructures will often be discovered
along the same discovery path throughout the algorithm: grouping the instances
that have the same signature at iteration n + 1 already spares much of the
isomorphism testing work.

Two signatures can however describe the same graph at iteration n+1, as in
the case of a cycle

W W

BB

. (15)

which might be described by four signatures by cyclic permutation of the labels
in (W, (0, W), (1, B), (2, B), ()). Therefore, when a new signature s is
encountered, the graph attached to this signature S is checked for isomorphism
with the graphs attached to previously encountered signatures.

• If no isomorphism is found, signature s is stored as the standard signature
of graph S, and the newly discovered substructure is inserted in the list.

20

• If an isomorphism σ is found with a subgraph S ′, then the new signature
s and the previously encountered signature s′ describe the same graphs. s′

has however been encountered first, and is therefore the standard signature
of the graph. Therefore, the new instance nodes are reordered according
to the isomorphism mapping σ, and inserted as a new instance to S ′. The
signature s is stored together with the mapping σ and the signature s′;
this way, if signature s is encountered again, it will not have to be checked
for isomorphism anew, and will be directly identified as an alias to the
standard signature s′ together with the corresponding mapping σ.

This method allows to produce standard signatures restricted the subgraphs
of G explored, and because of the pruning, only a small amount of subgraphs of
G is encountered.

3.4.2 Results of substructure discovery

Substructure score An important element of the substructure discovery al-
gorithm 1 is to assign a score to a substructure. As was done in [2], one solution
is to focus on the ratio of the compression achieved by the substructure.

Consider the information contained in the original graph. One could consider
an approximation to the minimum description length (MDL) to quantify this
information, as in [2]. To simplify computation, and as was done in [10], one may
also take the size of the graph—the sum of its number of nodes and vertices—as
an approximate measure of this information.

One compresses the graph G by substructure S by replacing every instance of
S in G by a single node with a new label. By knowing S and G|S, one can recover
an approximation of G by replacing the single instance nodes by instances of S.
Hence, the compression score (inverse of the compression ratio) is expressed as

score(S) = size(G)
size(S) + size(G|S)

(16)

which can be computed without actually compressing the graph, using

size(G|S) = size(G)− I · (size(S)− 1)

where I is the number of instances of S in G. This is an approximation: it
does not include the connection instructions needed to know how to connect the
vertices of the instances of S to the original graph, so one could not completely
recover the original graph from the knowledge of S and G|S. As will be discussed
in Section 3.5, when building a grammar, one can add a measure of the number
of needed graph productions to account for this difference.

Results Working graphs described in Section 3.2 were searched for substruc-
tures using the algorithm described earlier, implemented in the Python program-
ming language.

21

The results of substructure search on the graph that was already shown in
Figure 10(d) illustrates some behaviors of the algorithm. The best substructure
found with a beam width of 3 differs significantly from the best substructure
found with one of 5, as seen on Figure 11, and the size difference indicates that
the two where found at different iteration steps.

0 1 23

4 56 7
8

9 10 11 12
13 1415 16

17 18 19 20

21 2223 24

25 2627 28

29

30 3132 33
34 35 36 37

38

39

(a) original

0

1

2

3

(b) best sub.
BW = 3

s0 s1

s0 s1

s2 s3

0 1 23

4 56 7
8

25 2627 28

29

38

39

(c) compressed
BW = 3

0

1

2

3

4 5

6

7

89

10 11

(d) best sub.
BW = 5

s0

s1

s2

6

23

29

39

(e) compressed
BW = 5

Figure 11: Best substructures found and associated graph compressions for a
beam width (BW) of 3 and 5.

Figure 12 shows the evolution of the best scores of new substructures found
at each iteration for various beam widths. One observes that the substructure
shown on Figure 11(b) generates a local maximum in the score for every beam
width bigger than 1. It is however outmatched by the substructure shown on
Figure 11(d) at iteration 13 only for a beam width of 5. This shows that a
low-scoring substructure at some iteration can give rise to a high-scoring sub-
structure in subsequent growth steps. More surprising is the fact that this bigger
substructure is not found using a beam width of 7, which is bigger than 5. This
shows that the inclusion of more substructures can give rise to local maxima
that were undetected before, and purge lower scoring substructures that would
give rise to a high-scoring substructure later. Figure 13, which plots the average
duration spent on each iteration as a function of the beam width, also illustrates
the fact that the beam width affects the discovery process and leads to different
explorations of the subgraphs of G.

22

Beam width: 1 3 5 7

5 10 15 20 25 30
1.1

1.2

1.3

1.4

iteration

be
st

sc
or

e

Figure 12: Best score of the new substructures found at each iteration of the
algorithm, tested on the graph of Figure 11(a). Here maxDepth = ∞, the algo-
rithm only stops when only no repeating substructures are discovered anymore
and only singletons remain in the parent substructures list.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Beam Width

ite
ra

tio
n

du
ra

tio
n

(s
)

Figure 13: Average time spent on each iteration for different beam widths, using
the graph of Figure 11(a) as input.

Allowing overlapping instances Previous results where obtained by search-
ing only disjoint instances of substructures: a new encountered instance i is not
added to a substructure S if S already has an instance sharing a vertex with
i. However, in the edge replacement grammar learning procedure described in
Section 3.3, two instances may share two vertices, forming the edge along which
a new production is inferred.

This change poses problems the previous definition of the compressed graph
G|S and to the previous definition of the score of substructures. Consider for
example a node with label D connected a vertex common to two substructure
instances, as in Figure 14. Once the two instances have been replaced by nodes,
and linked by an edge to mark the fact that they were connected in the host
graph, how should D be connected to the new nodes? One solution is to connect
D to both of the nodes, as in Figure 14(b). This however introduces supplemen-
tary edges in the compressed graph.

Moreover, the sharing of vertices invalidates the information theory argument
behind our definition of the score of a substructure; the number of instances is
badly defined, and two-vertices instances can for example be counted twice by
sharing all their vertices with a second instance; Figure 14 shows the unwanted

23

W

B

B

B

D

i2

i1

(a) Conflict

i1 i2

D

(b) Possible resolu-
tion

Figure 14: Conflict in the compression with shared vertices.

case where each instance is present two times and shares its nodes with a copy
of itself.

0

1

(a) Best substructure

s0 s0 s0s0
s0 s0s0 s0

s1 s1

s2

s1

s2

s1 s1 s1

s2

s1s1 s1s1

s2

s1 s1

s1s1

s1s1 s1

s1s1

s1 s1s1

s1 s1

s1s1

s1 s1

s1

s1s1

s1

s1

s1 s1 s1

s1

s1s1

s1

s1 s1

s3s1 s3

s1

s4

s5

s4s1

s1

s3 s3

s1

s3
s4 s4

39

(b) Compression of the graph on
Figure 11(a)

Figure 15: Compression with shared vertices.

The scoring function (16) might be tweaked in order to favour instances that
are bigger than 2. However, this introduces complexity in the procedure and does
not solve the extraneous edge problem. Therefore, in the course of this work,
the search of repeating substructures has been restricted to non-overlapping in-
stances.

Adding geometry in the edges The requirement for two instances of a
substructure to be overlapped leads to an issue that has not been stated yet.
Consider the simple graph represented on Figure 16 and the substructure W−
W−B . This substructure has 5 instances in the graph, but all these instances
cannot be selected because of the requirement of non-overlap. Only the choice
of the two yellow instances yields a repeating subgraph: the other choices select
one instance in the graph only. Hence, the first chosen instance being possibly
blocking other instances, even if a better packing solution existed. Since there
is no way of controlling which instances will be selected by the algorithm, this

24

leads to a bias in the repeating substructure algorithm, the score not adequately
representing the value of the subgraph.

W

W

B W

W B

Figure 16: Overlapping instance choice problem: should the blue, the green or
the yellow instances be selected?

A possible solution to this issue is to add geometric information in the edges
of the graph. Indeed, one could argue that the geometric shape of the selected
instances has a semantic meaning, a balcony being for example often under a
window. If different geometries generate different substructures, then the choice
of the instances of these substructures is made easier, and there is less risk of
instances blocking other significant instances as in Figure 16.

This geometric information has been added as follows. Each edge between
two components centered on c1 and c2 in the label image is associated to a vector
[m, t] with

m = ‖−→c2 −−→c1‖ (17)

the distance between the two nodes and

t = 1−
∣∣∣∣(2θ

π
mod 2

)
− 1

∣∣∣∣ (18)

a measure in [0, 1] of the angle θ of the vector −−→c1c2 designed to be symmetrical
in c1 and c2; the edges in the graph being undirected, the information contained
in the edges must respect this symmetry.

In order to obtain an integer edge label, the vectors associated to all edges
are clustered using a k-means algorithm into C labels (C = 8 in the following
setup), after normalization of each component to zero mean and unit variance.

Figure 17 presents some graphs obtained after adding this geometric infor-
mation in the edges.

The substructure discovery algorithm is adapted in order to distinguish two
edges that do not have the same label: for instance, the labels of the edges are
added to the subgraph signatures.

This new approach allows to find geometrically pertinent substructures faster,
by driving the discovery process towards geometrically significant edges, and
reduce the problem of choosing between overlapping instances. Table 1 shows
some comparisons between substructures found with and without geometry in
the edges, and compares the algorithms running times.

25

33
2 7 4

3
72 6

2 62

7

0
2 5

0

33 2

2

1

0

3 1

0

5

5

31
0

0

4

7 11

4 31
7

1

5

1 6
0

3
3 0 300

2
2

0
2

317
0 11

3
1 7

1

2
1

73
3 0 300
2 2

00 2

3 1

2

32

0

2

02

1

4
4

3
1 0 1

3
0 1

7

0
5

7 1

5

1
7
0

0
2

3 3
2

33
6

6
5

5

5

0 1 23

4 56 7
8

9 10 11 12
13 1415 16

17 18 19 20

21 2223 24

25 2627 28

29

30 3132 33
34 35 36 37

38

39

22
31 6

2
3

1 7

2

1
31

2

0
3

0

2 2
1 361 33

2
6 5 3

2

3
54

2 2
1

2 0

6

4 20 24 24 2 5

2 2

0 0
1

4

2

0
1

5

2

0
1

0
1

0 0

2
1

0 0

2

0 5
0

2

0
5

0

4

015
2 2 2 22 2 24

6
5 1

56
5

2 2

0
05

2

0
1 0

2
5

0 0
5

0
0 5

0 1

5
2

5
0

0
5 2

00
1

3
2

0
1

22
1

2
4 2 222 4 5

36
5

5
5

32
2

4

3
5

20

5 3
22

0

35
2

4

3
2

4 5

5 3

4
5

5

5

45
0

2 2

4

7
4

2

4

75
4

4

5 6
2

0

55
2

1

53
2

0

5
0

2

4

5
0

4

7 5 7 63

0 1 23 45 6 7

8910 11 12 13 14
15

1617 18 19 20 21 22 23
24 2526 27 28 2930 31

32

3334 3536 3738 3940

41 42 4344 45 46 4748
49

50 51 52 53 5455 56 57

58

59 6061 62 63 64 6566
67

68

22
354

2
5

33

2

3
5 3 5 34

2
2

7 26 5

3

6

5 7
4

2
11

5

7

2
5

1

5

4
1

51

7

2
5

1

5
23 52 5235
22

3
1

3

6
5

5

2

31

3
65

2 235
3

5
4

2
2
3

7

6 5

4

2

3

7
6

5

4

4
7

2

6

22
5 1

7

1
5

0

4

15
2

2

4

1

3

03
3

0 12 3

4 56 7
8

910 11 12

131415 16

17 181920

2122 23

24 252627

28

29 30 3132

3334 35

36

Figure 17: Adding geometric information in the edges.

original graph substructure compressed graph
without geometry with geometry without geometry with geometry

0 1 23

4 56 7
8

9 10 11 12
13 1415 16

17 18 19 20

21 2223 24

25 2627 28

29

30 3132 33
34 35 36 37

38

39

0
1

2

3

4

5

6

7

8

3
4 3

3 4
3

0 1

2 3

s0 s1

s2

0 1 23

4 56 7
8

17 19

35

39

1

6 6

0

1

2 2 2 2

1

6

1

0

46

33
1 2 1

3
21 6

7

1
25

7

2
1 5

33 0

6

1

5

6

3 5 0

5

3
5

1

3
0

0 5

0

1

s0 s1

s2 s1

s3 s4

0 1 23

4 56 7
8

25 2627 28

29

38

39

20.2 s 7.8 s
0 1 23 45 6 7

8910 11 12 13 14
15

1617 18 19 20 21 22 23
24 2526 27 28 2930 31

32

3334 3536 3738 3940

41 42 4344 45 46 4748
49

50 51 52 53 5455 56 57

58

59 6061 62 63 64 6566
67

68

0

1

2

3
4

5

6

78

9

10

11

3

1

4
4

1

3
0

1

2

3

s0

s1

s2

s3

0 1 23 5 6

8910 11 12

24 25 28 31

3439

45 4648

68

4

6

4

0

5

4

7

5

3

44
1

76

7

7

4

67

11
67 2

1
6

7 6

1

7
60

2
26

5

1 1
7 627 66

1
6 7 6

2

6
75

1 1
3

1 4

6

2 14 12 15
0

5

7

7
6

11

2

7

1

4

7

11

4

7 6

1

2

1

5 05

7
3

50
2

1 1

2

6
5

1

5

60
5

5

0 6
1

4

07
1

3

06
1

4

0
5

1

5

0
2

2

6 0 6 26

s0s1 s0 s1

s0 s2s0s1

0 1 23 45 6 7

8910 11 12 13 14
15

32

49

50 51 52 53 5455 56 57

58

59 6061 62 63 64 6566
67

68

46.8 s 11.4 s
0 12 3

4 56 7
8

910 11 12

131415 16

17 181920

2122 23

24 252627

28

29 30 3132

3334 35

36

0

1

2

3

4

5

6

01

6

5

0 30

0 1

2

3
4

5

s0

s1
s2

s3

0 12 3

46

9 11

36

7

5

1

7

5

0

7

0
7

0

6

00
516

4
1

52

0

5
1 2 1 56

0
0

7
6

04
6

5

4
7

1

4 4

2

1

s0

s1s1

s2

0 12 3

4 56 7
8

21

28

35

36

22.5 s 5.0 s

Table 1: Comparison of substructure discovery results with and without geo-
metric information in the edges, for a beam search of width 7, and a maximum
depth 15. The running time of the algorithm is shown below the substructures.

26

Substructure search on multiple graphs The substructure search method
does not need to be adapted in order to search for repeating substructures over
a whole set of graphs. Indeed, it is sufficient to apply the algorithm over a graph
that is the disjoint union of all graphs in the sets, the connected components of
this collection being the graphs of the set themselves.

Figure 18 show the three top-scoring substructures when running the algo-
rithm on the whole dataset. The top-scoring substructure is a vertical chain
Balcony – Window – Balcony – Window, and was found on average 17, 6 times
per facade. The algorithm ran in 2m 13s (compared to 9m 44s without geometric
information in the edges).

1

7

7

0

1

2

3

score: 1.213

7

0

1

score: 1.207

57
5

7

0

12 3

score: 1.200

Figure 18: Top-scoring substructures found on the whole dataset of 104 labelled
images with geometric information in the edges (beam search of width 7).

3.5 Graph grammar learning
In the previous subsection, we have seen how repeating substructures of graph
can be detected, and how they compresses their host graphs. The question of an
adequate scoring of substructures remains, and in the case of graph grammars,
the number of generated productions can be included in the measure.

We have seen that the approach is not suited for adequately detecting in-
stances that are allowed to overlap on some number of vertices, whereas the
sharing of two vertices between instances is a key ingredient of the edge replace-
ment grammar learning method developed in [10]. Moreover, recovering the
original graph in the case of graphs compressed with vertex sharing, using the
conflict resolution illustrated in Figure 14(b), does not involve some simple edge
replacement grammar rules, similar to those described in Section 3.3.

This leads to the conclusion that the edge grammar inference method de-
scribed in [10] is not suited for inference of grammars generating the class of our
working graphs. The edge recursive grammars inferred by this procedure are not
expressive enough to describe the structure of our graphs of interest.

An alternative approach to graph grammar learning was developed, aiming at
the inference of a NCE node replacement grammar. Such a grammar G replaces
nonterminal nodes of a graph with new subgraphs. Each production

N =⇒ subgraph S with connections instructions C (19)

27

comprises a nonterminal symbol N , a graph S, and a set of connection instruc-
tions C. A connection instruction c ∈ C has the form

c : vk −→ L (20)

where vk is a node of graph S and L a label of grammar G, and indicates that
node vk of the new copy of S in the graph should be connected to all neighbours
of N labelled L.

The definition and mechanism of our replacement grammar is best understood
on an example. Consider a grammar G1comprising 2 productions, the first one

S =⇒
W W

BB

with no connections instructions; (21)

replacing the starting symbol S, and the second one, represented in a graphical
manner as

W
B

W

B
B ; (22)

here N is a nonterminal symbol, symbolized by the green circle; inside this
circle is the new subgraph S; the blue edges escaping this circle symbolize the
production’s 3 connections instructions

v1 −→W, v2 −→W, v3 −→ B. (23)

The only derivation of this grammar is

S =⇒

W W

BB

=⇒

W W

BB

W

B
B (24)

and shows how the neighbours of N connect to the nodes of the new subgraph
according to the connection instructions represented in (22).

The method of inferring such a grammar from the substructure discovery
algorithm described above is as follows:

1. A frequent substructure Sub is found in the example graph G;

2. The instances of Sub in the graph are grouped into k groups depending on
how they connect to their neighbouring nodes in the graph. Each group is
assigned a nonterminal symbol S1 . . . Sk and a set of connections instruc-
tions C1 . . . Ck describing these connections;

28

3. The graph is compressed by instance Sub.

Steps 1–3 are repeated until the new instances score are under a fixed thresh-
old and new substructures poorly compress the graph. The remaining graph Gend
is changed into a new production S =⇒ Gend with no connection instructions, S
being the starting symbol of the grammar.

The inferred grammar does not allow to recover original graph G perfectly.
Indeed, if one consider the following compression

W W
B

B

Sub

x1
x2

=⇒ W WN (25)

then the inferred grammar rule will have connection instructions x1 → W and
x2 → W the graph will be decompressed as

W WN =⇒ W

N
B

B
W (26)

thereby adding two extraneous edges. The example graph will in any case be a
subgraph of the recovered graph.

Substructure score with grammar rules The evaluation of the substruc-
tures seen in Section 1 can be adapted to take in account the grammar produc-
tions. Taking as before the size of a graph as a simple measure of the information
it contains, the original graph can be exactly recovered knowing

• The substructure S;

• The compressed graph G|S;

• For each inferred production pi, the connection instructions Ci;

• The set of extraneous edges E which one should remove from the decom-
pressed graph.

Therefore, a sensible score that can be given to a substructure is

score(S) = size(G)
size(S) + size(G|S) +

∑
pi
|Ci|+ |E|

. (27)

Again one has

size(G|S) = size(G)− I · (size(S)− 1)

and by grouping the instances connections and inspecting the outgoing edges
during substructure search, score (27) can be computed without actually com-
pressing the graph, which is important for efficiency.

29

3.5.1 Results

Compression and decompression: first grammar layer Table 2 presents
the substructure search, compression and decompression results obtained on 3
input labels. Interestingly, the same substructure is found on the three input
labels.

Multiple compression levels Figure 19 shows the compression chain of an
input graph: the input graph is compressed until the compressed graph contains
no repeating substructure. One observes that score (27) favours small substruc-
tures of 2 or 3 nodes in the graphs of the compression chain. This measure could
be altered to favor bigger substructures to suit a particular Computer Vision
task.

Multiple decompressions The introduction of extraneous edges at a bottom
layer of the graph compression chain affects all layers above. Therefore, a recon-
struction of the original graph is tractable only after a few compressions, as is
shown on Figure 20.

Working on multiple images As can be noticed in previous results, the
grammars generated from single labels share similarities, in the nature and order
of discovery of their substructures. A method of working with several graphs
together would help describing a general grammar of facades. However, the
method described earlier, consisting in concatenating the input graphs, is not
suited for grammar productions discovery: here the algorithm would learn how
to reconstruct a set of facades and not a single facade instance.

30

original

best subst. 5

0

1

7

0

1

1

0

1

score 0.993 0.971 0.967

compressed

0 0 00
0 0 0 00 1 0

0

0

0 00 0

instance kinds 1 2 1

decompressed

extraneous edges 1 14 6

Table 2: Compressions/decompressions of 3 input labels. Substructures were
searched separately on input labels. Reconstructed nodes are square shaped,
and extraneous edges, introduced by reconstruction, are thick and red.

31

0 0

0 0

0 0

0 0

0 0
0 0

0 1

0 0

0 1

0 1

0 0 00 0 0 0 0

Figure 19: Repeated compression of an input graph. Top Left: input graph.
Bottom Right: final compressed graph.

32

from layer 1 from layer 2 from layer 3 from layer 4 from layer 5

from layer 6 from layer 7 from layer 8 from layer 9 from layer 10

Figure 20: Reconstruction of the original graph, starting from different grammar
layers. The extraneous edges (in red) become important quickly.

33

Conclusions and Perspectives
The widespread use of low-cost computing power in electronics has enabled
the development of high-performance Computer Vision systems relying on high-
dimensional low level image features and running on consumer devices. In order
to introduce semantic information in images and handle the high compositional
complexity of natural scenes, it seems however necessary to go beyond low level
representations and introduce object-level models on top of image features. These
models should have sufficient degrees of freedom to account for the high variabil-
ity of appearances and object arrangements, while staying simple enough to be
learned and used in a tractable way.

Grammatical models are one of the promising possibilities. Their previous
use in Computer Vision does however suffer from limitations of the grammar
formalism, engendering tree-like representations without really making use of
the full processing power of grammars, which allows repetition of rules. The
graph grammar formalism is richer and able to describe whole classes of graphs,
mathematical objects that are omnipresent in Computer Vision today. However,
there has been little work on graph grammar inference, which is a key for their
adoption as object models.

This work introduces methods for the introduction and learning of graph
grammar formalisms in Computer Vision. Its main contribution is an efficient
Computer Vision-oriented substructure discovery algorithm, and the introduc-
tion of chained partially reversible compressions of graphs. The use of this algo-
rithm to assist and guide a Computer Vision task is the object of further work.
The first attempt of graph grammar generation falls short of inferring a grammar
describing classes of images, and the extraneous edges introduced by the lossy
substructure compression hinders the fidelity of the grammatical representation
of image labels. Moreover, the score given to a substructure should be adapted
to suit a particular use of the model, as the generic scoring function given in this
work favors small grammar substructures, which seems unsatisfactory to account
for high level graphs structure.

However, the similarity of the observed patterns between compressions of
different labels suggests that chained substructure discovery can be used as a
signature of high level structure of objects. Instead of trying to reconstruct a
graph with perfect fidelity using a graph grammar and introducing extraneous
edges, one possibility would be to develop inexact grammar production matching
using inexact graph matching techniques and allow for alterations of the original
graph for it to suit better the expressivity of a graph grammar model.

By answering some questions on the introduction of graph grammars in Com-
puter Vision, this work opens up many others, among which the implementation
of a graph grammar model in an actual object detector.

34

References
[1] N. Chomsky. Three models for the description of language. Information

Theory, IRE Transactions on, 2(3):113–124, 1956.

[2] D. J. Cook and L. B. Holder. Substructure discovery using minimum de-
scription length and background knowledge. arXiv preprint cs/9402102,
1994.

[3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm
for matching large graphs. In 3rd IAPR-TC15 workshop on graph-based
representations in pattern recognition, pages 149–159, 2001.

[4] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge 2007 (voc 2007) results (2007).
In URL http://www. pascal-network. org/challenges/VOC/voc2007/work-
shop/index. html, 2008.

[5] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 32(9):1627–1645, 2010.

[7] P. F. Felzenszwalb and D. McAllester. Object detection grammars. In ICCV
Workshops, page 691, 2011.

[8] L. Fürst, M. Mernik, and V. Mahnič. Graph grammar induction as a parser-
controlled heuristic search process. In Applications of Graph Transforma-
tions with Industrial Relevance, pages 121–136. Springer, 2012.

[9] J. P. Kukluk, L. B. Holder, and D. J. Cook. Inference of node replacement
recursive graph grammars. In SDM, pages 544–548. SIAM, 2006.

[10] J. P. Kukluk, L. B. Holder, and D. J. Cook. Inference of edge replace-
ment graph grammars. International Journal on Artificial Intelligence Tools,
17(03):539–554, 2008.

[11] A. Lindenmayer. Mathematical models for cellular interactions in devel-
opment i. filaments with one-sided inputs. Journal of theoretical biology,
18(3):280–299, 1968.

[12] A. L. P. Prusinkiewicz, A. Lindenmayer, J. S. Hanan, F. D. Fracchia, and
D. Fowler. The algorithmic beauty of plants with. 1990.

[13] G. Rozenberg and H. Ehrig. Handbook of graph grammars and computing
by graph transformation, volume 1. World scientific Singapore, 1999.

35

[14] G. Stiny. Spatial relations and grammars. Environment and Planning B:
Planning and Design, 9(1):113–114, 1982.

[15] O. Teboul. École Centrale Paris facades database, 2010.

[16] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios. Shape
grammar parsing via reinforcement learning. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pages 2273–2280.
IEEE, 2011.

[17] L. G. Valiant. General context-free recognition in less than cubic time.
Journal of computer and system sciences, 10(2):308–315, 1975.

[18] J. Weissenberg, H. Riemenschneider, M. Prasad, and L. Van Gool. Is there
a procedural logic to architecture? In Computer Vision and Pattern Recog-
nition (CVPR), 2013 IEEE Conference on, pages 185–192. IEEE, 2013.

[19] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture,
volume 22. ACM, 2003.

36

	Introduction
	Grammars: formalism and uses in Computer Vision
	Formal Grammars
	Use of grammars in Computer Vision
	Object detection grammars
	Split grammars

	Graph grammars
	Definition
	Node Replacement Grammars
	Hyperedge Replacement Grammars

	Methods and results
	Research direction
	Working graphs
	References on graph grammar learning
	Substructure search
	Algorithm
	Results of substructure discovery

	Graph grammar learning
	Results

	Conclusions and Perspectives

