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Abstract

Superpixel algorithms are a common pre-processing step
for computer vision algorithms such as segmentation, object
tracking and localization. Many superpixel methods only
rely on colors features for segmentation, limiting perfor-
mance in low-contrast regions and applicability to infrared
or medical images where object boundaries have wide ap-
pearance variability. We study the inclusion of deep im-
age features in the SLIC algorithm to exploit higher-level
image representations. In addition, we study ways of fine-
tuning superpixel segmentations to a particular image do-
main, yielding an intermediate domain-specific image rep-
resentation that can be applied to different tasks.

1. Introduction
Many deep learning based applications in computer vi-

sion operate on grids of pixels and use convolutions trained
end-to-end. However, popular algorithms have successfully
leveraged image segmentation to group pixels into super-
pixels, reducing the input dimensionality while preserving
the semantic content needed to address the task at hand [3].
Superpixels are efficient domain-specific image priors that
tend to transfer across tasks and reduce the data needed to
train models, which can be very beneficial for domain adap-
tation and weakly supervised settings, e.g. weakly super-
vised image segmentation [5]. Graph-based convolutional
networks [4] also allow applications of deep learning be-
yond grid-like inputs. In this work, we study the inclusion
of superpixel priors in deep learning pipelines.

The hand-crafted design of superpixels algorithms limits
our ability to tune image segmentations to a specific image
domain, such as infrared, medical, of spatio-temporal data.
Given the focus on efficiency, superpixels have often been
designed to operate on color features only; image segmen-
tations could however incorporate higher-level image rep-
resentations. We consider extensions to a standard super-
pixel algorithm incorporating higher-level unsupervised or
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Figure 1: Original image and some scattering features

supervised image features. We also study paths to fine-tune
a superpixel segmentation algorithm to a specific modality.

2. SLIC algorithm
The Simple Linear Iterative Clustering (SLIC) [1] im-

age segmentation algorithm is popular both for its speed
and performance; it uses a clustering approach similar to
k-means, and usually operates on images in the CIELAB
color space. After initialization of the cluster centers along
a grid, a two-step iterative process clusters pixels until con-
vergence. First the pixels are assigned the closest cluster
center in the joint 5-dimensional space of colors (L, a and
b) and spatial (x and y) components, with a weighted L2
distance that includes a compactness parameter σ balanc-
ing between colors and space. Second, the cluster centers
are updated based om the pixel assignments. Finally, af-
ter convergence, a simple connected components algorithm
enforces connectedness of the image segments.

3. Augmenting SLIC with deep representations
We experiment with SLIC beyond the original Lab fea-

tures. For a particular pixel, we consider pixel-level image
features extracted from a deep network f1, f2, ...fM . These
features can be unsupervised, as in the case of scattering
features [6] (Fig. 1), or trained for a particular vision task.
As we aim to integrate superpixels in a deep architecture,
these features can be provided at no extra computational
cost. We typically experiment with early layers of a CNN,
which typically behave like smooth and universal filters.

To incorporate the image features into SLIC, we aug-
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Figure 2: Integration of features into SLIC.

Table 1: Performance evaluated on 300 PASCAL VOC [2] images
(superpixel size 16, compactness 0.05, 5 iterations)

IoU Rec MDE UE CO
SLIC 0.920 0.723 1.23 0.080 0.29
Scat + SLIC 0.944 0.764 1.05 0.069 0.31
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Figure 3: Influence of superpixel parameters

ment the number of image channels. The scattering features
are upscaled and concatenated with the input image. The fi-
nal image of sizeW×H×(M+3) can be used in the SLIC
algorithm, where the Labxy clustering space now becomes
a larger L, a, b, f1, f2, ...fM , x, y space. Individual feature
maps are weighted with coefficients α1...αM .

We first experiment on greyscale images with features
extracted from a 2-layer scattering network [6] (Figure 2).
We manually define the weights α of the individual lay-
ers based on their visual appearance. Superpixel perfor-
mance is evaluated using 5 metrics. Four of them are
described in [7]: Boundary Recall (Rec), mean distance
to edge (MDE), undersegmentation (UE) and compactness
(CO). We also define an intersection over union (IoU) met-
ric, which gives the maximum segmentation performance
when superpixels are optimally labeled. Table 1 compares
the performance of standard SLIC versus SLIC with scat-
tering features. The scattering features improve all metrics
by a considerable amount. Figure 3 shows the influence of
the compactness and size parameters on the boundary recall
scores.

4. Trainable superpixels
We further maximize the use of extra input features by

integrating a trainable neural network in the SLIC algo-
rithm. This eliminates the need to define feature weights
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Figure 4: left-to-right: Input image, SLIC pixel clustering, train-
able superpixels learned on SLIC, weakly supervised trainable su-
perpixels

α while also opening possibilities for better clustering.

4.1. Architecture

We train a classifier assigning a pixel to one of its neigh-
boring cluster centers. This assignment method replaces
the k-means clustering of SLIC, and fits in the iterative ap-
proach of SLIC. The classification network is fed with the
features of the pixel to be labeled, extended with the dis-
tances to the N closest clusters and the feature differences
with these clusters. The network outputs a N -dimensional
vector giving the assignment probabilities for the N closest
clusters. The classifier network is small and easy to train.
Parallel interference is possible since each pixel can be pro-
cessed independently.

4.2. Training methods

We first train the neural classifier to replicate SLIC out-
puts and demonstrate a good replication of SLIC perfor-
mance in our trainable framework (see Fig. 4). Beyond
SLIC, we consider a supervised training of superpixels us-
ing semantic segmentation labels as a ground truth. A multi-
label loss is used, where 1 is assigned to all clusters in the
same segment as the pixel being labeled, and 0 to others.
The training tends to have instabilities. The method does
generally produce superpixels, but the generated superpix-
els do not always preserve object borders. Adding slightly
more supervision by labeling all clusters in the same seg-
ment with 0.8 and the closest cluster with 1 gives more
stable but inaccurate superpixels, as shown in Figure 4.
The small receptive field of unsupervised scattering features
might be a limiting factor; future experiments will explore
our training strategy with more general deep features.

5. Conclusions and future work
Using a more comprehensive feature space instead of the

common color space can improve superpixel algorithms.
The integration of superpixels in a trainable pipeline can
open the way to domain adaptation for superpixel represen-
tations. Trainable superpixels might exploit the deep repre-
sentations in a better way. Future work includes a more
careful design of the loss function for robust training of
superpixels, and using deep features beyond unsupervised
scattering representations.
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