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Abstract

In order to improve the speed and scalability of detection systems,
new feature coding methods have emerged from ideas related to manifold
learning. Locality-constrained Linear Coding (LLC) achieves state-of-
the art classifying performance on competitive datasets using only linear
SVM, where other methods require the computationally costly use of non-
linear classifiers to achieve optimal performance. The aim of this work is
to assess the recognition performance of LLC on the Caltech 101 dataset,
to experiment with the parameters of this method, and to compare LLC
with other coding methods like Vector Quantization or Sparse Coding.
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1 Introduction

Image classification is a field of constant research in Computer Vision. State-of-
the art methods rely either on representations learned from deep belief networks,
specifically designed features such as HOG [1,2], or aggregation of multiple de-
scriptors. Once a feature has been chosen, a popular approach to classification
consist in using bag-of-features (BoF) and spatial pyramid matching. BoF rep-
resents an image as an orderless collection of local features, which is an efficient
representation of all the objects contained in the image and performs well in
global image categorization, but disregards the spatial layout of the features
about the objects, which might however be valuable for classification. Spatial
Pyramid Matching (SPM) [3] addresses this issue by aggregating the statistics
of local features over increasingly finer subregions. SPM adds spatial ordering
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to the representation, is computationally efficient, and gives good performance
on image classification tasks.

The coding procedure of SPM is illustrated by figure 1: first, the features are
locally or densely extracted from the image; in the case of HOG, these features
consist in histograms of the directions of the gradients in the neighborhood of
each point. Then, each feature point xi is coded using a codebook B: one
obtains a code ci such that Bci is close to xi, and if hard Vector Quantization
(VQ) is used, each feature is mapped to a single visual word, i.e. ‖ci‖0 = 1. As
will be discussed later, this quantization step is crucial for the representation
efficiency, and is the main difference between the different classifying methods
studied in this work. After the coding, the different layers of the pyramid
are computed: at each level, the image is subdivided into increasingly finer
subregions, and within the different subregions the codes are aggregated by
taking their maximum or average. Finally, the feature vector is obtained by
concatenation of all subregions histograms.

Image Features
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Figure 1: Feature vector coding and classification in the SPM approach.

While this simple coding scheme allows one to have a good understanding
of the detection system (as opposed to the use of convolutional networks, for
instance), one finds out experimentally that linear SVM is not sufficient to
achieve optimal classification performance on the induced representation when
a simple a VQ coding step is used. Although this absence of linear separability
in feature space can be addressed by using nonlinear kernels such as Chi-Square
kernels, the associated cost of O(n2 ∼ n3) in training and O(n) in testing, where
n is the training size, is often intractable in real-world applications. Linear SVM
on the other hand has an associated cost of O(n) in training and constant in
testing. Obtaining nonlinear features that work better with linear classifiers is
therefore an important research direction in order to improve the scalability of
detection systems.

Several approaches have been proposed to address this problem, among
which the use of Sparse Coding (SC), as in ScSPM [6]. The idea is to enforce
sparsity on the coefficients ci of xi the over-complete basis B during the coding
step – by enforcing a constraint on the `1 norm of ci – in order to generate
compact representations of the data, while using a softer quantization method
than Vector Quantization, therefore reducing the quantization error.

This work investigates yet another approach by Wang et al. [6]. Their hy-
pothesize that the efficiency of Sparse Coding stems from the locality of the
encoding that it generates, and accordingly propose a new coding method, Lo-
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cal Coordinate Coding (LCC), that explicitly enforces a locality constraint on
the learned basis and feature vectors. Yang et al. [5] proposes variant of LCC,
named Locality-constrained Linear Coding or LLC, with the benefit of a fast
implementation.

In section 2, various ideas related to locality enforcement in coding will be
formalized, and some connections to manifold learning will be made. In section
3, the performance of LCC on the classification of the Caltech 101 image dataset
will be assessed, and the influence of the parameters of the method will be
studied.

2 Locality constraints in coding

Using feature extraction, an input image I is mapped to a set of D-dimensional
local descriptors X = [x1,x2, . . .xN ] ∈ RD×N , which might be sampled densely
or at selected interest points; D = 128 in the case of SIFT descriptors. Coding
aims at extracting a more compact representation of these features. In this
section, it will be shown that local coding emerges naturally from the ideas of
manifold learning, which are based on the intuition that the features lie on a
lower-dimensional manifold.

2.1 Nonlinear learning in high dimensions

Before specifically discussing the coding problem, lets take a step back and con-
sider the classification problem as a whole, predicting the label Y from a single
feature xi. We want to learn a function f from the training data (xm, Ym)m=1...n

such that f(x) ≈ Y . The function f is a real-valued function that includes both
the coding and classification part in figure 1, and would represent how likely
the feature x belong to an image from the garfield category in that particular
example (although only one feature x is considered here in the classification
problem, the SPM pooling takes care of aggregating the features in the whole
problem).

Kernel smoothing is one approach to be considered in order to learn the high
dimensional nonlinear function f . For a given kernel K, e.g. a Gaussian kernel
k(x,x′) = exp(−‖x− x′‖2/2σ2), kernel smoothing predicts the label Y of x as
the weighted average of close-by observations

f(x) =

∑n
m=1 k(xm,x)Ym∑n
m=1 k(xm,x)

. (1)

This learning method is said to be zero-order because the prediction is equiv-
alent to

Ŷ = arg min
y

n∑
m=1

k(xm,x)[y − Ym]2 (2)

which shows that it will be locally constant in a neighborhood of x. Locally first-
order Kernel smoothing can also be derived by considering the parametrization
Ŷ = ŵᵀ

xx + b̂x , the parameters being learned according to

[ŵx, b̂x] = arg min
w,b

n∑
m=1

k(xm,x)[y − Ym]2; (3)
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the learned function will change linearly in the neighborhood of x. One draw-
back of this method is its lack of adaptivity, the bandwidth of the kernel being
fixed; a natural extension that addresses this issue is to consider the k-Nearest
Neighbors (k-NN) of x. Still, this local learning method is not used in high
dimension learning. The reason is that in high dimension, each point x is
“far away” from its neighbors; this leads to overfitting and sensitivity to noise.
Kernel smoothing is moreover computationally expensive, particularly for the
first-order problem (eq. (3)).

2.2 Basis learning

The failure of Kernel Smoothing or k-NN in high dimension can be addressed
using basis learning. Instead of selecting all the neighbors of x in order to
classify this feature, one considers a small number of precomputed anchor points
B = [b1,b2 . . .bM ] ∈ RD×M ; typically M ∼ 1024. These anchor points can be
thought of as representative of the feature space; they are to be less noisy than
individual observations of the training sample. The use of anchor points instead
of nearest neighbors also solves the computation issues of the k-NN method. A
feature point will have an approximate decomposition

xi ≈ Bci (4)

with ci ∈ RM the coefficients of xi in the over-complete basis B. It is here that
the coding problem appears specifically: what constraints should be enforce on
the codebook B and on the code ci in order to give a formal meaning to the
decomposition in equation (4) and learn anchor points (bi) and code (ci) best
suited for the classification task? Next, we will describe various such coding
schemes: VQ, ScSPM, LCC and LLC.

VQ: Vector Quantization

Vector Quantization coding solves the constrained least-square problem

arg min
C

N∑
i=1

‖xi −Bci‖2

s.t. ‖ci‖0 = ‖ci‖1 = 1, ci � 0,∀i.

(5)

Each feature xi is thus mapped to exactly one element of the codebook, in
practice found by searching the nearest neighbor. This simple 0-order scheme
was used in SPM original implementation [3]; the hard assignment of xi to
one codebook element introduces however a high quantization loss, i.e. loss of
information on the original features due to the coding.

ScSPM: Sparse Coding

ScSPM uses sparse coding to lower the quantization loss of VQ; a feature xi is
soft assigned to a small number of codebook elements by solving the `1 norm
regularized problem

arg min
C

N∑
i=1

‖xi −Bci‖2 + λ‖ci‖1. (6)
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The generated codes still have only a small number of nonzero values, while
much less quantization error than VQ are introduced. Accordingly, this method
easily outperforms VQ-SPM on standard image benchmarks [6].

LCC: Local Coordinate Coding

Yu et al. [7] explain the success of ScSPM not only by the soft-assignment, but
also by the fact that Sparse Coding produces local codes: for a reconstruction
x ≈ Bci, ci ≈ 0 when bi is far from x. They introduce LCC in order to explicitly
enforce such a locality constraint. In this method, the code C is obtained by
solving

arg min
C

N∑
i=1

‖xi −Bci‖2 + λ‖∆1+p
i ci‖1 (7)

where ∆i = diag(‖b1 − xi‖, . . . , ‖bM − xi‖).
Here the sparsity term in problem (6) has been replaced by a localization

term, which favors basis vectors that are close to xi in the coding. Interestingly,
sparse coding appears as a limiting case with no locality constraints with p = −1.
A codebook B can be learned by optimizing problem (7) jointly on the code and
on B on the training data, using EM-like alternate minimization on B (lasso
problem) and C (least-square problem when p = 1).

The authors show [7] that LCC has strong theoretical grounds in manifold
learning, on the contrary of sparse coding which is based on heuristic arguments.
Using the approximate decomposition

xi ≈
M∑

m=1

cimbm, (8)

the nonlinear classifying function we want to learn f(xi) ≈ Y is locally approx-
imated as a linear function

f(xi) ≈
M∑

m=1

cimf(bm), (9)

in the local bases around xi. Assuming that the features lie in on a compact
manifold M ⊂ RD, the objective function in problem (7) can be shown to be
a first-order approximation to the approximation error in equation (9), under
some Lipschitz-smoothness assumptions on f . Moreover, for a typical manifold
with well-defined curvature, we may choose p = 1 in the localization term. An
important result is the result of consistency: as the number of training samples
n→∞, LCC can learn any nonlinear function on the manifoldM, and the rate
of convergence depends on the intrinsic dimension of the manifold m(M) and
not on the dimension of the feature space D.

LCC can be seen as a locality constrained and theoretically sound version
of sparse coding. The high dimensional nonlinear function becomes linear with
respect to the anchor point. Therefore, LCC is a first-order coding method,
a high-dimensional generalization of the first-order smoothing kernel method
(eq. (3)) where the use of a codebook addresses the computation and dimen-
sionality issues.
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LLC: Locality-constrained Linear Coding

Building upon LCC, Yang et al. [6] propose a faster alternative to localize the
coding. Under LLC, the code learning problem becomes

arg min
C

N∑
i=1

‖xi −Bci‖2 + λ‖∆̃ici‖2

s.t. 1ᵀci = 1,∀i

(10)

where
∆̃i = exp (∆i/σ)/Zi (11)

Zi being chosen such that ∆̃i � 1. Compared to LCC coding (problem (7)),
the localization term in equation (10) is an `2 constraint, and the localization
penalty ∆̃ grows exponentially around x instead of linearly. The added con-
straints 1ᵀci = 1 ensures that the learned codes are shift-invariant.

Here the localization term departs more significantly from sparse coding
than in LCC, by the use of the `2 norm. Still, because of the fast increase of
the localization penalty (equation (11)), only a few values of ci will be nonzero.
The added benefit of this variant is that its solution can be derived analytically
as

c̃i = (Ci + λ∆̃2
i ) \ 1

ci = c̃i/1
ᵀc̃i

(12)

where Ci = (B− 1xᵀ
i )(B− 1xᵀ

i )ᵀ is the data covariance matrix.

2.3 Fast implementation of LLC

Coding

In practice, the few basis vectors selected by the significant values of ci after
solving equation 3 will be roughly the nearest neighbors of xi. Therefore, LLC
coding can be approximated by using the K nearest neighbors of xi as the
local basis Bi, and solving equation (10) using only this local basis Bi as the
codebook, finding

arg min
C

N∑
i=1

‖xi −Bici‖2 + λ‖∆̃ici‖2

s.t. 1ᵀci = 1,∀i.

(13)

This approximation reduces the cost of computing the code using equa-
tion (12) from O(M2) to O(M + K2), where the number of nearest neighbors
we have to consider K � M and is linked to the chosen bandwidth σ in the
localization penalty. In practice, the code computation in further simplified by
setting the localization penalty ∆̃ proportional to the identity inside the K-NN.

The only overhead is the need to find the nearest neighbors of the xi. This
K-NN search can be made efficient by hierarchical representation of the feature
space, allowing the use of much larger codebooks.
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Codebook learning

A simple way to generate the codebook B is to use a clustering method such
as K-Means clusterings to form M clusters from the training feature samples.
As suggested by the experiments in next section, this approach already gives
satisfactory results.

One may however improve classification results by optimizing the codebook
for LLC coding specifically. The idea is to optimize the objective function in
equation (10) jointly on the code and the codebook, adding some `2 constraint
on the code in order to define the problem and allow for efficient optimization
as in

arg min
C,B

N∑
i=1

‖xi −Bci‖2 + λ‖∆̃ici‖2

s.t. 1ᵀci = 1,∀i
‖bj‖2 ≤ 1,∀j.

(14)

3 Experiments and results

Classification: speed and performance on Caltech 101

Caltech 101 is an image dataset for classification. It consists of 9144 images
grouped into 102 categories, including one background category.

With the code given by the authors of LLC, using a dictionary of size
M = 1024 trained by k-means, one obtains the results indicated in the first
row of table 1. This is to be compared with the second row, where a dictionary
of size M = 2048 is trained according to the partial gradient descent method
described subsection 2.3 (the values are taken from article [5]). The measured
coding time averages to 0.48 second per image, including the save of the figures
in a separate file. The results of a 7-layers convolutional network trained on Im-
ageNet [8] is listed along the results (7L CN), as well as the result of a 2-layer
scattering network (2L SN) [4]. The results of Linear SVM classification with
pyramid pooling but no LLC coding is shown as the entry “SIFT+SPM”.

type, dict, pool. 5 10 15 20 25 30

LLC, k-means, max 48.2± 0.6 58.6± 0.4 63.75± 0.35 66.9± 0.9 69.4± 0.6 71.1± 0.4
LLC, trained, max 51.15 59.77 65.43 67.74 70.16 73.44

7L CN, -, max - - 83.8± 0.5 - - 86.5± 0.5
2L SN, -, mean - - - - - 67.3± 0.5

SIFT+SPM, -, max - - 43.73± 0.8 - - 50± 1
LLC, k-means, mean 27± 1 36.7± 0.9 40± 1 46.9± 0.8 50.0± 0.7 52± 1
LLC, sparse, max 46.3± 0.9 - 66.35± 0.51 65.8± 0.7 - 69± 1

LLC, triangles, max 46± 1 - 55± 19 57± 20 60± 21 62± 21
ScSPM, sparse, max 52.4± 0.4 61.9± 0.8 66.35± 0.51 69.3± 0.6 70.6± 0.5 72.9± 0.7

Table 1: Classification results in various methods, type of pooling, dictionary,
and number of training samples (indicated by the first row numbers).
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Figure 2: Examples of images whose features constitute the triangles dictio-
nary

3.1 Role of the dictionary and pooling

Various tests were made to clarify the role played by the choice and training
of the dictionary, and the type of pooling. The results are listed together in 1.
The different dictionaries that were used are:

• k-means, where 1024 vectors are computed from k-means in feature spaces
over more than 200000 examples extracted from PascalVOC dataset (in
order to avoid dataset bias);

• sparse, a dictionary trained by sparse coding constraint by the code given
with ScSPM

• triangles, a dictionary trained by picking samples of the SIFT features
associated with a database of 100 × 100 images containing 500 triangles
drawn at random (examples in figure 2)

The SIFT features in the dictionary have 4 × 4 × 8 = 128 dimensions (16
cells and 8 bins for the gradient). The visualization of a few of these histograms
is presented in figure 3. One notices a surprising fact in the second row: the
features contained in the trained sparse dictionary appear localized in feature
space.

Notice that LLC optimization of the dictionary doesn’t add much to the
performance of the algorithm (0.3 ∼ 1.4%). More generally, we notice that
the use of other dictionaries, including one generated at random, does not have
great impact on the classification performance. Notice however the fact that
the accuracy has a huge variance using the triangles dictionary. This can be
explained by the redundancy in the images: some features will be very close to
each other, and produce more than one local basis for a vector to be encoded
in which breaks down classification. Therefore the algorithm is dependent on
the random choice of training images, since some good choices will have less
redundancy than others.

Results 1 also show that max pooling is more efficient than average pooling.
This is surprising, because the whole point of LLC was to construct a linear
separable space, and by applying a non-linear operation on this space, one
should in principle loose this property. In fact, the maximum step already
selects features. One explanation would be that this “subselection” acts as
a detector and remove unnecessary redundancies from the codebook, thereby
improving the global richness of the representation.
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Figure 3: Visualization of some elements of the k-means (top), sparse (middle)
and triangles (bottom) dictionaries.
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Figure 4: Measured distances between a query feature and the vectors of its
associated local basis, using different methods and dictionaries.

Locality of the coding

Figure 4 presents the distances measured between feature points and their closes
local basis. One sees that the LLC code on a k-means dictionary is indeed
more local than the sparse code in ScSPM or than the LLC code on a sparse

dictionary. The fact that ScSPM performs as well as LLC despite less apparent
locality suggests that locality is not the end of the picture, and that the choice of
the dictionary still has its importance when it comes to having the best possible
results.

4 Conclusion

In terms of generating image descriptors suited for large-scale classification, LLC
codes are promising. They are fast to compute, and induce the same level of
classification accuracy as sparse coding. The success of LLC can moreover be ex-
plained theoretically using ideas related to manifold learning; they pave the way
to a better mathematical understanding of features, coding and classification.

However, some design choices in LLC are still subject to experimentation; in
particular, the role played by dictionary learning still raises questions, as does
the use of max-pooling.
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The experiments done in this work suggest that while optimizing the dictio-
nary for a locality criterion does improve the classification accuracy, the gain
compared to a simple k-means trained dictionary is very modest. Moreover,
the use of random dictionaries, or exemplar dictionaries by simple aggregation
of features, still produces reasonable results. Hence the key to explain the suc-
cess of sparse and locality-constrained coding is the coding itself and not the
dictionary.

It remains to show whether there is better to do for generating dictionaries
without learning them. The appearance of structures in feature spaces in trained
dictionaries suggests that this is the case.
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