Deep Learning Class MVA 2015
Final Assignment

Grade: Total 10 points + 1 bonus point

T.A.: Maxim Berman — maxim.berman@ecp.fr

Deliverable: To be delivered: 20/01/16

Include: Report with answers + code (without including external libraries like
MatConvNet, or pretrained models like VGG-ImageNet).

Part 1. Personal research questions (3 points)

Please research the following questions and write concise answers.

Question 1.1. Articles on big image category datasets such as ImageNet often include
the “top-5” prediction error together with the “top-1” prediction error. Why is the
“top-5” error often seen as a better measure of performance than the “top-1” error?

Question 1.2. The training of DNNs often includes procedures of data corruption
and data augmentation. Give the intuition of why these steps can

e Improve robustness

e Prevent overfitting

e Enforce invariances in the model.

Question 1.3 Besides to adding momentum, adaptatively weighted descent methods
are often used to improve stochastic gradient descent. A particularly popular one is
AdaGrad. Research the principle of AdaGrad and explain intuitively how it can improve
and fasten convergence to the minimum of an energy function.

For the next two questions read the paper [9], Sketch-a-Net that Beats Humans.,
Qian Yu et al., http://arxiv.org/abs/1501.07873”, on human sketch recognition with
neural networks.

Question 1.4 A human sketches a drawing in a particular order. How do the authors
incorportate this ordering in the model? Discuss the benefits of this way of incorporating
the order, and its limitations.

Question 1.5 How do authors learn features for different drawing scales? How do
they combine the classification results of these different scales together? What other
feature fusion strategies could be used (some are suggested in the text)? In particular,
think of a Directed Acyclic DNN that would learn this feature fusion in the training.

http://arxiv.org/abs/1501.07873

Figure 1: An image iteratively generated, or “dreamed”, by the GoogleLeNet “Inception” trained on
MIT Places-205 Dataset.

Part 2. Deep dreaming in MatConvNet (8 points)

Some of the recent research effort on Deep Learning has been devoted to visualizing the
image features detected by each layers of a network. In convolutional networks, the first
layers often specialize to detect simple features (edges, cominations of edges...) while
the later layers detect higher-order combinations of these features (faces, whole objects
or object parts. ..).

One of the ways to visualize the role played by a layer in the detection is by finding an
image that activates many of the neurons of this layer. This leads to the notion of “Deep
Dreaming”, where we don’t try to adjust the network’s output on a particular image, but
instead, we modify the input image to maximize the network output.

Although ideas around Deep Dreaming had appeard before as a visualization of DNN|
e.g. in [5], a blog post on Google Research Blog in June 2015 [3] widely advertised the
idea, with crazy dreams produced by neural networks such as the example in Figure
appearing all over the web.

2.1. Deep dreaming: implementation and experiments (4 points)

The idea of deep dreaming is as follows: given a network of N layers, starting from an
input image, we would like to iteratively modify the input image pixels to maximize the
L? norm of a target layer [< N. In order to do so, we will use backward propagation. If
z is an output function that we try to optimize, we have seen that backward propagation
allows one to iteratively compute the gradients

dz dz
@0 M g @
dzdx gradient dzdw gradient

I are parameters of layer [, and z! is the input to layer I. When tuning the

parameters of the network, z is a usually loss function, and we are primarily interested
in the dzdw gradients in order to minimize it.

In deep dreaming, we can set out ouput function z to be the the L? norm of layer [,
and we can backpropagate the gradient from that layer to compute

where w

dz

dx()’
i.e. the derivative of this objective function with respect to the input image. We can then
do gradient ascent on the input image to maximize the objective z, i.e. modify input

image with
dz

M M 4 /\—da:(l) (2)

where A is the step size.

We see that we only need to do forward/backward propagation in the network up
to some layer [. In the code provided with this assignment, we have split MatConvNet
function v1_simple nn.m into three functions init _res, forwardto, backwardfrom, that
allow you to initialize the network response, do forward propagation up to some layer,
and backward propagation from some layer to the source. See demo.m for a sample use
of these functions.

We will first experiment with Deep Dreaming with a MatConvNet implementation
of VGG “Very Deep” Networks [6], contained in imagenet-vgg-verydeep-16.mat, that
you should get by running demo.m. You may use imresize to match the expected input
size to the network, stored in the variable net.normalization.imageSize.

You may have a look at the ipython notebook published by Google on https://
github.com/google/deepdream/blob/master/dream. ipynb which implements Deep Dreams
with the Caffe library with Google Network GoogLeNet for a source of inspiration to your
own implementation. Because of the different network architecture, the dreams you obtain
from VGG may be very different from the dreams obtained with GoogleLeNet.

Question 2.1 If our objective z is the L? norm of the response of layer [, contained
in z(*Y (or res(1+1) .x in Matconvnet), show that the jacobian equals

d
- (zin — 94 0+
xr

Question 2.2 Implement one step of gradient ascent: given an input image, do
forward propagation up to layer [with forwardto, then backpropagate the gradient of
the L? norm of layer [to the input image, and modify the input image by following the
direction of the gradient, by a factor step_size (eq. (2))).

Question 2.3 Peek into VGG: use MatConvNet function vl_simplenn_display to
have a peek into the architecture of VGG. Why are the last 5 layers different? What is
the function of the last layer?

Question 2.4 First experiments: use 3 images of your choice as input images, and
normalize them to the right input size for the network. Iterate a few steps (10-50) of
gradient ascent on these images. Do the following experiments:

https://github.com/google/deepdream/blob/master/dream.ipynb
https://github.com/google/deepdream/blob/master/dream.ipynb

Figure 2: Images obtained by deep dreaming on layers (3), (15) and (27) of VGG-ImageNet respectively,
with a methodology similar to Question 3.4.

e Monitor the L? norm: plot the evolution of the L? norm of the target layer with
the iteration of gradient ascent to show its optimization. Does it seem to converge
to a stable point? You may try to run the optimization for more steps.

e Experiment with the target layers: show that when picking one of the early layers,
local features (edges, corners) tend to be enhanced. On the opposite, show that
picking one of the later layers draws complex high-level patterns on the image.

e Experiment with step size, and show the influence of this parameter

In these first experiments, you may have difficulty interpreting the patterns produced by
the network. In order to improve this, you may introduce some reqularization by applying
a gaussian blur to the image between each iteration of gradient ascent. In Matlab, this
can be achieved with

h = fspecial('gaussian’, size(4), 1.0);
g = imfilter(A, h);

Question 2.5 Bigger input sizes: if you feed the network bigger input sizes that the
ones it has been trained on, do the convolutional layers still work the same? Do the
completely connected layers work the same?

In the following, you may use bigger input sizes if needed, as long as you optimize
objectives related to the convolutional layers.

Question 2.6 Multi-scale dreaming: instead of optimizing the whole image during
gradient ascent, select a zoomed-in portion of the input image at each iteration, and do
a gradient step on the subimage, before pasting it back to the original image. You may
choose the strategy for picking the scale and offset of the image portion (at random, or
in a cycle). Show some figures obtained with this multi-scale dreaming procedure.

Question 2.7 Dreaming from noise: instead of slighly modifying input images, try to
input noise, and let the gradient ascent procedure invent everything in the image. Show
some images obtained.

3.2. Personal experiments (4 points)

The following is a list of experiments that give you some room for personal experimen-
tation with Deep Dreaming. You may get up to 4 points if you do two (or more) of the

4

following experiments. You may also include other personal experiments if you are able
to shed light on interesting properties with Deep Dreaming.

Experiment 1 Modify the network: Sketch-a-Net authors [9] made their matconvnet
trained networks available on http://www.eecs.qgmul.ac.uk/~tmh/downloads.html. Ex-
periment with deep dreaming with a Sketch-a-net network. For simplicity, use one of the
networks that do not include drawing order information, such as dataset_without_
order_info_256.mat. Some suggestions of questions:

e Sece if feeding a natural image to a Sketch-a-net network tends to enhance “drawing-

like” features in the image

e Inspect whether the representations learned for sketch classification are very differ-

ent than the features learned by vgg

Experiment 2 Modifying the objective: the L2 norm of some layer is the objective
you have been experimenting with. Experiment with other kind of objectives, show some
images obtained and explain whether they meet your intuitions:

e The sum of the norms of several layers at the same time

e The activation norm of a particular ouput neuron (interesting on one of the two

last layers — before or after the softmax — if you try to make the image look like a
particular image category)

e The dot product between the activations of a layer, and the activations of that layer

for another reference image (see “ Controlling dreams” section on Google’s dream. ipynb
notebook).

Experiment 3 Modify the training dataset: on http://places.csail.mit.edu/
you might download an implementation of “VGG” trained on MIT Places database.
If you import this network to MatConvNet using the script provided my MatConvNet
import-caffe.py, you should be able to visualize whether you are able to draw more
“place-like” features, like in Figure[I] You might also try out the Places205-GoogLeNet
network.

Further experiments Here are some suggestions for further experiments:

e Gradient ascent often produces images that are difficult to interpret. Gaussian
bluring is a simple form of regularization, that enforces correlation of nearby pixels
in the input. Come up with other forms of regularization that enforces that the
optimization produces natural images.

e Adversarial examples are images of class a A that are optimized to be classified
by the network as another class B. Try to modify the optimization to produce
adversarial examples.

e Saliency maps: introduced in [5], saliency maps are interesting representations of
which pixels a network mainly bases its classification on. The saliency of one pixel
p for class C' is the magnitude of the derivative of the ouput score for class C' with
respect to the value of the pixel p. You may visualize some of these saliency maps
with little more work than in Fzperiment 2, since you computed this derivative if
you tried to maximize the score of an output neuron.

For the interested readers, deep dreaming and related methods give good insight into
the internals of neural networks and their failure modes. See e.g. [5, 8] for works on deep
visualization methods. See |7, 4, 1] for works on adversarial examples, where neural nets
are tricked into misclassifying images. Some of the ideas of the article can be used in the

http://www.eecs.qmul.ac.uk/~tmh/downloads.html
http://places.csail.mit.edu/

further experiments.

Other approaches have been applied with success to visualize the internals of Neural

Networks, including DeConvNets |10] and feature inversion [2].

References

[1] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and har-
nessing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[2] Aravindh Mahendran and Andrea Vedaldi. “Understanding deep image represen-
tations by inverting them”. In: arXiv preprint arXiv:1412.0035 (2014).

[3] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. “Inceptionism: Going
deeper into neural networks”. In: Google Research Blog. Retrieved June 20 (2015).

[4] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images”. In: arXiv preprint
arXiv:1412.1897 (2014).

[5] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolu-
tional networks: Visualising image classification models and saliency maps”. In:
arXiv preprint arXiv:1312.6034 (2013).

6] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[7] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint
arXiv:1312.6199 (2013).

[8] Jason Yosinski et al. “Understanding neural networks through deep visualization”.
In: arXiv preprint arXiv:1506.06579 (2015).

9] Qian Yu et al. “Sketch-a-net that beats humans”. In: Proceedings of the British
Machine Vision Conference (BMVC). 2015, pp. 7-1.

[10] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional

networks”. In: Computer Vision-ECCV 2014. Springer, 2014, pp. 818-833.

