
Signal processing
Lab 4: Denoising with Dictionaries

Maxim Berman – maxim.berman@ecp.fr

Friday 20/03/2015

Abstract

While lab 2 and 3 used a linear filtering approach for image denoising, here
we consider a dictionary learning approach. The goal is to learn a dictionary u�
corresponding to an overcomplete basis of natural images, and to keep only a few
vectors of this basis to encode the patches of a noisy image, in the hope that the
noise is not retained in this sparse representation.

Deliverable: To be submitted before Wednesday 08/04/2015.

1 Image coding with Matching Pursuit
We are interested once more in an image denoising problem. As in the previous labs, we
consider a white noise model

𝐲 = 𝐱u� + 𝝃 (1)

where 𝝃 is a vector of independent gaussian variables of variances 𝜎2
u�. We will now consider

a nonlinear filtered technique: denoising using overcomplete basis, or dictionaries.
The idea is that in natural images, small patches in the images are far from being

random. By considering local image patches 𝐩 of size 𝑤 × 𝑤, one could pick a basis 𝐃
that accurately captures this naturally occurring structure, in the hope that a linear
combination of a small number of these basis elements

𝐩 = 𝐃𝜶 (2)

yields a good approximation of 𝐩, without retaining its noise.
The use of an overcomplete basis (or dictionary) of vectors leads to the question of

choosing between the many possible approximate decompositions in (2). This is where
the crucial criterion of sparsity appears: if the basis vectors are good representatives of
the structure of the natural patches, then we might suppose that selecting solutions that
use the least number of basis vectors yields a natural patch as well, and therefore, a good
approximation. This leads to the following problem:

�̂� = arg min
u�∶‖u�‖u�<u�

‖𝐩 − 𝐃𝜶‖2 (3)

where ‖𝜶‖0 denotes the support of 𝛼, that is, its amount of non-zero coefficients.

1

This sparse coding problem is 𝒩𝒫-complete in general; however, there has been many
successful algorithms developed to tackle it. In this section, you will apply the Matching
Pursuit algorithm to decompose an image over a dictionary, and apply this for image
denoising.

The general outline of the denoising procedure is as follows:

1. Build a dictionary from patches extracted from the noisy image or from other
examples of similar images

2. For each patch extracted on the image on a grid, replace the patch by its sparse
approximation over the dictionary

3. Sum the local patches to recover an approximation of the whole image.

Since the noise is independent from the underlying structure of natural images, this
encoding will likely not preserve it, while preserving other important features of natural
images (such as contours).

In this section, you are provided with a dictionary already. You will implement two
different algorithms, Matching Pursuit – Algorithm 1 – and Orthogonal Matching Pursuit
– Algorithm 2, in order to compute the sparse approximation.

The provided code already loads the image and the dictionary and densely extracts
local overlapping patches densely over the image. It also makes the image bigger by
mirroring it at its boundaries, in order to avoid dealing with the edges differently. Be
sure to study this code carefully in order to understand its behavior. An important point
is that while a local patch is naturally represented as a 𝑤 × 𝑤 array, we work with vector
representations of our patches; therefore, the computations are done after stacking the
values into a 𝑤2 vector - the same holds for the dictionary, of size 𝑑 × 𝑛, where 𝑑 = 𝑤2

is the dimension of the patch space, and 𝑛 the number of basis elements.

Algorithm 1 Matching Pursuit (MP) for image coding.
1: Inputs:

dictionary 𝐃 = (𝐝1| … |𝐝u�) ∈ 𝐑u�×u�, input vector 𝐩 ∈ 𝐑u�

sparseness 𝑘
2: Output:

coefficients 𝜶 such that 𝐃𝜶 ≈ 𝐩
3: Initialize:

residual 𝐫 ← 𝐩; 𝜶 ← 𝟎
4: while ‖𝜶‖0 < 𝑘 do
5: ̂𝑗 ← arg maxu� |⟨𝐫, 𝐝u�⟩| ▷ Pick next basis vector
6: 𝛼 ̂u� ← 𝛼 ̂u� + ⟨𝐫, 𝐝u�⟩ ▷ Update weight and residual
7: 𝐫 ← 𝐫 − ⟨𝐫, 𝐝u�⟩𝐝u�
8: end while

Question 1 Implement a function alpha = MP(D, p, k) that computes a k-sparse
decomposition of a vector 𝐩 on the overcomplete basis 𝐃 using the Matching Pursuit
algorithm.

2

Algorithm 2 Orthogonal Matching Pursuit (OMP) for image coding.
1: Inputs:

dictionary 𝐃 = (𝐝1| … |𝐝u�) ∈ 𝐑u�×u�, input vector 𝐩 ∈ 𝐑u�

sparseness 𝑘
2: Output:

coefficients 𝜶 such that 𝐃𝜶 ≈ 𝐩
3: Initialize:

residual 𝐫 ← 𝐩; index set 𝐽 ← ∅
𝐓 ← (empty matrix)

4: for t = 1 to k do
5: ̂𝑗 ← arg maxu�∉u� |⟨𝐫, 𝐝u�⟩| ▷ Pick next basis vector
6: 𝐽 ← 𝐽 ∪ { ̂𝑗}; 𝐓 ← (𝐓 | 𝐝 ̂u�) ▷ Update selected indices and vectors
7: �̂� = arg minu� ‖𝐩 − 𝐓𝐚‖2 ▷ Update reconstruction coefficients
8: 𝐫 ← 𝐩 − 𝐓𝐚
9: end for

10: We have obtained 𝐚 ∈ 𝐑u� such that 𝐓𝐚 ≈ 𝐩. Construct 𝜶 by augmenting 𝐚 with
zero values on the other basis vectors.

Question 2 Use the provided code that uses this function to encode every patch on
this basis using a k-sparsity constraint. With the dictionary provided, show the denoised
image for 𝑘 = 4.

Question 3 Plot the curve of the PSNR of the reconstructed image as a function of
the sparsity constraint 𝑘 ∈ [1, 10]. It should be similar to the red curve of figure 1.

Now we consider the OMP algorithm.

Question 4 We will assume that 𝐓 ∈ 𝐑u�×u� has full column rank during the run of
the algorithm, i.e. 𝐓⊺𝐓 is invertible. Show that the solution to the least-square problem
in line 7 of Algorithm 2 is

arg min
u�

‖𝐩 − 𝐓𝐚‖2 = (𝐓⊺𝐓)−1𝐓⊺𝐩. (4)

Question 5 Implement a function alpha = OMP(D, p, k) that computes a k-sparse
decomposition of a vector 𝐩 on the overcomplete basis 𝐃 using the Orthogonal Matching
Pursuit algorithm.

Question 6 Plot the curve of the PSNR of the image reconstructed with OMP as a
function of the sparsity constraint 𝑘 ∈ [1, 10]. It should be similar to the blue curve of
figure 1.

Although Orthogonal Matching Pursuit has better theoretical properties than Match-
ing Pursuit, we see that in this denoising problem, simple Matching Pursuit gives a better
PSNR ratio than Orthogonal Matching Pursuit, in the case of looser sparsity constraints.
The dictionary has been trained with a sparsity objective 𝑘 = 4, and the maximum of the
PSNR is coherent with this training in the case of OMP. The better experimental perfor-
mance of MP for looser sparsity constraints can be explained intuitively by the fact that
denoising gains from the additional averaging introduced by selecting more dictionary
(sub-optimal) atoms.

3

sparsity constraint k
1 2 3 4 5 6 7 8 9 10

P
S

N
R

27.5

28

28.5

29

29.5

30

PSNR MP
PSNR OMP

Figure 1: PSNR obtained with Matching Pursuit and with Orthogonal Matching Pursuit as a function
of the sparsity constraint u�.

Note: Orthogonal Matching pursuit can be made more efficient by using more ad-
vanced optimizations of the algorithm (Choletsky decomposition) and slightly modifying
the selection of the next basis vector. It becomes superior to MP after these optimizations.
We will not, however, go into those details.

2 Dictionary learning
We will now find out how to learn a dictionary suited to our image denoising problem.
We will consider a dictionary of 𝑛 = 200 atoms. The dictionary will be learned from the
noisy image, with the hope that the noise is not retained in this representation.

Question 7 To create a suited dictionary of 𝑛 = 200 atoms, one first idea is to
randomly extract 𝑛 = 200 patches from the noisy image and to take these patches as
dictionary atoms. Show experimentally that this “fast training” method leads to bad
denoising performance: create a dictionary 𝐃fast from 200 random patches extracted
from the image, and show the reconstructed image and its PSNR using the code from
the first section, with a Matching Pursuit algorithm. You may use the provided function
extract_patches to extract the patches randomly from the image.

Questions 8, 9, 10 are optional, accounting for 1 bonus point, but highly recommended,
for a better understanding of dictionary methods.

The simplistic approach of stacking up examplar vectors is thus not sufficient. Learn-
ing a dictionary can be formulated and solved as an learning optimization problem.
Remember the sparsity-constrained objective of dictionary encoding

�̂� = arg min
u�∶‖u�‖u�<u�

‖𝐩 − 𝐃𝜶‖2 (5)

Suppose we have 𝑚 = 1000 example patches 𝐩(1), 𝐩(2), … , 𝐩(u�), extracted from the
noisy image, and we want to find the dictionary that will give the best encoding for these

4

example patches. This leads to the minimization problem

�̂� = arg min
D

{
u�

∑
u�=1

min
u�(u�)∶‖u�(u�)‖u�<u�

‖𝐩(u�) − 𝐃𝜶(u�)‖2} (6)

where we try to minimize the sum of the reconstruction errors for each of these example
patches.

Since the same reconstruction error can be obtained by multiplying the atoms in 𝐃
and dividing a vector 𝜶(u�) by the same amount, this problem is ill-defined. It can be made
well-defined by constraining the atoms in 𝐃 to have unit norm, yielding the constraint
𝐃 ∈ 𝒟 with

𝒟 = {𝐃 ∈ 𝐑u�×u�, ∀𝑖 = 1, … , 𝑛, ‖𝐷⋅,u�‖2 = 1} . (7)

In order to solve the resulting joint minimization problem

min
D∈u�,‖u�(u�)‖0<u�

{
u�

∑
u�=1

‖𝐩(u�) − 𝐃𝜶(u�)‖2} , (8)

we will use an iterative procedure were we alternate between picking the best 𝜶(u�) for a
fixed 𝐃, and computing the optimal 𝐃 for fixed 𝜶(u�). At first, the dictionary is initialized
to 𝐃fast, computed above, normalized so that its column vectors have unit norm.

Question 8 Write a function D = normalize_dict(D) that takes a dictionary 𝐃
as input and divides each of its column vectors by their norm, so that the returned
normalized dictionary 𝐃 has unit-norm column vectors.

We then iterate between the two steps

• 𝛼-update : Matching Pursuit is used to find the optimal 𝜶(u�) for each of the
example patches 𝑖 = 1, … , 𝑚

• 𝐷-update : Projected Gradient Descent is done to find the best 𝐃 for fixed 𝜶(u�).

Matching Pursuit is used in the 𝜶 because it is faster than OMP (for a naïve imple-
mentation) and still gives good results, as seen in the previous section. We now detail
the 𝐷-update step. The optimization in 𝐃

min
D∈u�

{
u�

∑
u�=1

‖𝐩(u�) − 𝐃𝜶(u�)‖2} (9)

can be rewritten more compactly as

min
D∈u�

{‖𝐏 − 𝐃𝐀‖2
2} (10)

where 𝐏 is a 𝑑 × 𝑚 matrix containing each of the example patch vectors, and 𝐀 is a
𝑛 × 𝑚 matrix containing each of the 𝜶(u�) – and the ‖ ⋅ ‖2 matrix norm is the Frobenius
norm

‖𝐌‖2
2 = ∑

u�,u�
|𝑀u�,u�|2.

5

Learning iteration
5 10 15 20 25 30 35 40 45 50

Le
ar

ni
ng

 o
bj

ec
tiv

e

600

650

700

750

800

850

900

Figure 2: Decrease of the learning objective with the number of iterations.

This constrained minimization problem can be solved by a few iterations of gradient
descent, which consists in following the opposite direction of gradient of the objective
in 𝐃 towards the minimum of this objective. At each step of this gradient descent, one
updates 𝐃 according to

𝐃 ← 𝐃 − 𝜏 (𝐃𝐀 − 𝐏)𝐀⊺⏟⏟⏟⏟⏟⏟⏟
gradient of the objective in u�

(11)

where 𝜏 is the step-size. After each step of gradient descent, we renormalize 𝐃 using
normalize_dict(D), so that its column vectors keep unit norm (hence it is a projected
gradient descent).

Implementation. The initialization, the first 𝜶-update, and the first 𝐷-update are
already implemented. For the gradient descent in 𝐷, we take the step-size 𝜏 = 1/‖𝑃𝑃 ⊺‖
– it can be shown to have good convergence properties.

Question 9 We have so far done 1 iteration of dictionary learning. Put the 𝐴 and 𝐷
update in a loop to perform 50 iterations of dictionary learning. Plot the decrease of the
objective (11) as a function of the learning iteration. You should obtain a figure similar
to Figure

Question 10 Denoise the image using your own learned dictionary. Report the
denoised image and the PSNR obtained.

Question 11 (not optional.) Why is the denoising method presented here much more
suited to a real application than the methods seen in labs 2 and 3?

Question 12 is an optional super-bonus.

Question 12 The dictionary learning method seen here used random patches ex-
tracted from the noisy image as training examples. Another way of learning the dictio-
nary is to train it on patches extracted from other natural images (other than the ground
truth). Learn a dictionary on 1000 patches extracted randomly from 5 grayscale images
found on the Internet. Compare the denoising performance of the dictionaries trained by
the two different methods.

6

