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Abstract

This lab will build upon the work you did on signal denoising in Lab 2. This
time, we will be interested in finding the optimal Wiener filter of a given signal to
perform denoising. The result will be compared with the best linear gaussian filter
optimizing the SNR ratio. Finally, we will use iterative Wiener filtering in order to
study a plausible implementation, where we would not be given the ground truth
image.

Deliverable: To be submitted before Friday 13/03/2015.

1 Wiener Filter Theory
In image denoising, we are given an image 𝐲 which is a noisy observation of a “ground
truth” image 𝐱𝟎. The goal is to reconstruct an image 𝐱 from 𝐲 that recovers the original
image 𝐱𝟎 as closely as possible, removing the effect of the noise.

In Lab 2, we have seen how, given a model of white noise with variance 𝜎2
𝑛, we can

empirically find the best linear gaussian filter of variance 𝜎2
𝑟 optimizing the PSNR ratio

of the recovered image 𝐡 ⋆ 𝐲 with respect to the ground truth 𝐱𝟎.
In this lab, we will see how, when we are given a model not only for the noise but

also for the signal, we can theoretically determine the optimal filter to use to optimize
the PSNR, the Wiener filter.

Remember the expression of the PSNR for images encoded as a grayscale vector in
[0, 1]𝑛𝑥𝑛𝑦 :

PSNR = −10 ⋅ log10 ( 1
𝑛𝑥𝑛𝑦

∑
𝑖,𝑗

(𝑥𝑖,𝑗 − 𝑥𝑖,𝑗
0 )2) .

Obviously maximizing the PSNR is equivalent to minimizing the squared error or 𝐿2

norm
‖𝐱 − 𝐱𝟎‖2 = ∑

𝑖,𝑗
(𝑥𝑖,𝑗 − 𝑥𝑖,𝑗

0 )2. (1)

We will again use a model of additive noise 𝐲 = 𝐱 + 𝝃. In a white noise model 𝝃
is a matrix of independent gaussian variables of variance 𝜎2

𝑛 – however we stay in the
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general case for now. As in Lab 2, we are interested in finding a translation-invariant linear
denoising operator parametrized by a convolutional kernel 𝐡, such that the reconstruction

𝐱 = 𝐡 ⋆ 𝐲 (2)

is as close to 𝑥0 under the 𝐿2 norm (1). In order to give a theoretical solution, this time
we consider that the ground truth image 𝐱𝟎 is itself the realization of a random process.
We are now interested in minimizing the expected value of the norm (1):

𝑅(𝐡) = 𝔼𝐰,𝐱𝟎(‖𝐱 − 𝐱𝟎‖2) = 𝔼𝝃,𝐱𝟎(‖𝐡 ⋆ 𝐲 − 𝐱𝟎‖2)

with respect to 𝐡. Under our additive noise model the risk writes as

𝑅(𝕙) = 𝔼𝝃,𝐱𝟎(‖𝐡 ⋆ (𝐱𝟎 + 𝝃) − 𝐱𝟎‖2). (3)

Remember Parseval’s theorem for Fourier transforms: the squared 𝐿2-norm of a func-
tion 𝑓(𝑥, 𝑦) is proportional to the squared L2-norm of its Fourier transform ̂𝑓(𝜔𝑢, 𝜔𝑣):

‖𝑓(𝑥, 𝑦)‖2 = 𝐶 ⋅ ‖ ̂𝑓(𝜔𝑢, 𝜔𝑣)‖2; (4)

the proportionality constant depend on the normalization used for the Fourier transform
and is not important here.

Question 1.1 Show that under the assumption of independence between 𝐡 and 𝐱𝟎,
minimizing the risk (3) accounts to minimizing the risk in Fourier space

�̃�(𝐡) = (1 − �̂�)(1 − �̂�)∗𝔼𝝃,𝐱𝟎(‖ ̂𝐱𝟎‖2) + �̂��̂�∗𝔼𝝃,𝐱𝟎(‖ ̂𝝃‖2). (5)

One shows that the solution to this optimization problem is

ℎ̂(𝜔𝑢, 𝜔𝑣) =
𝑃𝑥0

(𝜔𝑢, 𝜔𝑣)
𝑃𝑥0

(𝜔𝑢, 𝜔𝑣) + 𝑃𝜉(𝜔𝑢, 𝜔𝑣)
(6)

where 𝑃𝑥0
= 𝔼(|𝑥0(𝜔𝑢, 𝜔𝑣)|2) and 𝑃𝜉 = 𝔼(|𝜉(𝜔𝑢, 𝜔𝑣)|2) are the power spectral density of

the source and the noise.
Question 1.2 Interpret this expression: what is the Wiener filter doing?
In the case of white gaussian noise the power spectral density is the variance 𝜎2

𝑛.
In order to compute the Wiener filter, the spectral density of the source source can be
approximated by the particular realization 𝑥0 that we have, as

𝑃𝑥0
(𝜔𝑢, 𝜔𝑣) ≃ 1

𝑁
| ̂𝑥0(𝜔𝑢, 𝜔𝑣)|2

where 𝑁 = 𝑛𝑥𝑛𝑦 is the number of pixels in the image.
Again, note that this Wiener filter needs the ground truth image 𝑥0 to be computed:

in real applications, one may not have access to this unperturbed signal.
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Figure 1: Optimal PSNR attained by a Wiener and a Gaussian linear filter, and by an iterative Wiener
filter process.

2 Implementation
The script provided loads the same image as in Lab 2 and adds some white noise to it.

Question 2.1 Write a function h = wiener_filter(x0, sigma_n) that takes an
image as argument and compute its associated Wiener convolutional kernel for a gaussian
white noise of standard deviation 𝜎𝑛. You may use Matlab functions fft2 and ifft2.

Question 2.2 Use the provided code to visualize the image denoised by Wiener
filtering. Include this image and the value of the PSNR in your report. Is the noise
completely removed? Do we recover the informations contained in 𝑥0?

Question 2.3 Visualize the kernel 𝐡 using imagesc. Make sure you center the filter
using fftshift.

Question 2.4 Write a function PSNR = best_wiener_psnr(x0, sigma_n) to com-
pute the PSNR atteigned by the Wiener filter on an input image 𝐱𝟎 using additive
gaussian noise of parameter 𝜎𝑛. Use the provided code to visualize the evolution of the
best Wiener PSNR with the noise.

Question 2.5 Adapt the code from Lab 2 in order to write a function PSNR =
best_gaussian_psnr(x0, sigma_n) to compute the PSNR atteigned by the optimal
gaussian filter. Superpose the plot obtained with the plot obtained in question 2.4. You
should obtain the plot of Figure 1 (without the yellow curve which shall be computed in
the next section).

Question 2.6 What are the limits of our method? Can you criticize the assumptions
made in deriving the Wiener filter?
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3 Iterative Wiener filtering
In this section, we will implement Wiener filtering in a real application, where we do not
have access to the ground truth 𝐱𝟎. We may rely on approximation methods to estimate
the power spectrum of 𝐱𝟎 from the noisy observation, but this requires further modeling
of the signal. Another approach is to iteratively apply Wiener filtering.1 We first evaluate
the power spectrum of the noisy observation to compute the Wiener filter, and then we
iteratively compute a Wiener filter on the ouput. This converges to a fixed point which is
not an optimal Wiener filtered image; however a good approximation can be found after
only a few iterations.

Question 3.1 We suppose that 𝜎𝑛 is known: on a commercial camera, this standard
deviation could e.g. be estimated on calibration images. Implement Iterative Wiener
filtering: start from the approximation 𝐱(𝟎) = 𝐲 and then iteratively compute and apply
the Wiener filter on 𝐱(𝐢) to obtain the approximation 𝐱(𝐢+𝟏). Show the images obtained
over the first 5 iterations.

Question 3.2 Plot the graph of the PSNR of 𝐱(𝐢) as a function of the iteration 𝑖
(up to 30 iterations). Use this result and qualitative observation of the images observed
in Question 3.1 to show that we are only interested in doing a few iteratons of iterative
Wiener filtering.

Question 3.3 Write a function PSNR = best_it_wiener_psnr(x0, sigma_n) that
finds the best value of the PSNR attained by iterative Wiener filtering for an input image
𝑥0 and a white noise of parameter 𝜎𝑛. Adapt the code given previously to superimpose
this plot to the two other similar curves, as in Figure 1.

Question 3.4 One sees that Iterative Wiener filtering performs worse than the two
other denoising methods: why is it still interesting?

1This iterative Wiener filtering of images is introduced in Hillery, A. D., & Chin, R. T. (1991). Iterative
Wiener filters for image restoration. IEEE Transactions on Signal Processing, 39(8), 1892-1899.
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